
 Eindhoven University of Technology

MASTER

Passive network audit framework

Santillan Arenas, J.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 19. May. 2025

https://research.tue.nl/en/studentTheses/499bac01-6454-447a-924a-4bfcc62a7b00

Passive Network Audit
Framework

Master Thesis

Javier Santillan

Eindhoven University of Technology
Department of Mathematics and Computer Science

Supervisors:
Dr. Jerry den Hartog (TU/e)

M.Sc. Barry Weymes (Fox-IT)
Dr. Tanir Ozcelebi (TU/e)

Public Version

Eindhoven, August 2014

Abstract

“Passive Network Audit” technology includes network discovery and monitoring techniques in
which network packets are captured, processed and analyzed in order to gather information about
the network. It relies on passive analysis of network traffic activities, meaning that no single active
interaction takes place between auditor and network environment. The goal of passive network
audit is to assess the security level of the network environment, based on predefined baselines
(e.g policies, rules). By using different detection techniques such as protocol behaviour analysis,
network enumeration, signature-based Intrusion Detection Systems (IDS), Network Flow Analysis
(NFA) and Deep Packet Inspection (DPI), it is possible to identify network threats taking into
account network elements, patterns and known vulnerabilities. This research aims to identify the
gap between Network Security Monitoring (NSM), Security Information and Event Management
(SIEM) and Passive Network Audit (PNA) by analyzing some taxonomies and existing frameworks.
Findings of this background study are taken into consideration to define a security framework which
is intended to take features of different technologies in order to provide a very flexible, automated
and reliable assessment framework that can be implemented as passive audit technology. Hence,
this framework aims to provide complementary features to SIEM and NSM approaches in order to
get a better context of security events. Furthermore, this thesis defines the prototype that provides
the capabilities of an automated passive network audit engine. It was developed as internal project
of Fox-IT.

Passive Network Audit Framework iii

Release Notes

The present document is the Public version of a research developed as part of an internal Fox-
IT project. This master thesis contains the foundations of Passive Network Audit Framework
research, omitting specific information (e.g. internal design features, datasets, etc). For further
information you may contact Fox-IT.

iv Passive Network Audit Framework

Preface

This Master’s thesis is the result of my graduation project executed at Fox-IT in The Netherlands.
The graduation project is part of my Master in Computer Science and Engineering - Information
Security Technology at the Eindhoven University of Technology. This security-focused master pro-
gram is coordinated by the Kerckhoffs Institute, a collaboration program between the University
of Twente, Radboud University Nijmegen and the Eindhoven University of Technology.

I would like to express my gratitude to all people who helped to finish my thesis. I would like
to thank to my supervisor at TU/e, Jerry den Hartog, who provided valuable guidance to write my
thesis and find a better way to conduct my research. Also, I would like to thank to my technical
supervisor at Fox-IT, Barry Weymes, who opened the doors of an awesome security company, and
who always provided me valuable feedback, time and resources to improve my research.

Of course, I would like to thank to my family, Guillermina, Magdaleno, Daniel. Without their
trust and support I would never get that far, they have played a key role to achieve all my goals.
My sincere thanks to all my friends in Mexico and Netherlands who always have been there to
help, work together and live invaluable moments.

Finally, I am very thankful to three organizations. First, CONACYT (Consejo Nacional de
Ciencia y Tecnoloǵıa) for its trust and financial support that allowed me to study abroad during
these two years. Also, Fox-IT, a great security company that allowed me to develop and reinforce
security skills within an awesome environment. Finally, UNAM-CERT, a great place where I learnt
and gained experience in information security, specially intrusion detection skills that allowed me
to develop my thesis in a better way.

Javier Santillan

August, 2014

Passive Network Audit Framework v

Contents

Contents vi

List of Figures viii

List of Tables x

List of Listings xi

List of Algorithms xii

Abbreviations xiii

1 Introduction 1
1.1 Network Security Monitoring (NSM) . 2
1.2 Security Information and Event Management (SIEM) 4
1.3 Passive Network Audit (PNA) . 5

1.3.1 Strengths of PNA . 6
1.3.2 Weaknesses of PNA . 6

1.4 Problem Statement . 7
1.5 Motivation . 8
1.6 Outline . 9

2 Network Audit and Intrusion Detection Taxonomy 11
2.1 Overview . 11
2.2 Taxonomy of Intrusion Detection Models . 11
2.3 Classification of Detection Models . 14

2.3.1 Misuse-based detection . 14
2.3.2 Anomaly-based detection . 16

2.4 Intrusion Detection Frameworks useful for PNA . 20
2.4.1 Common Intrusion Detection Framework (CIDF) 20
2.4.2 Data mining framework . 22
2.4.3 Event Calculus-based framework . 24
2.4.4 Passive testing framework based on security rules specification 25
2.4.5 Alert post-processing framework . 27
2.4.6 Passive Network Appliance . 29

2.5 Summary of gathered knowledge and features . 30

3 Framework Specification 31
3.1 Overview . 31

3.1.1 Purpose . 31
3.1.2 Scope . 31

3.2 Main architecture . 32
3.3 Modules . 32

vi Passive Network Audit Framework

CONTENTS

3.3.1 Data Capture Module (DCM) . 32
3.3.2 Data Processing Module (DPM) . 34
3.3.3 Data Visualization Module (DVM) . 36

3.4 Selection of technologies . 36
3.5 Misuse-based features . 39

3.5.1 Audit Rules . 39
3.5.2 Audit Dictionary . 40
3.5.3 Audit Blacklist . 41

3.6 Anomaly-based features . 43
3.6.1 Short sequences analysis . 43
3.6.2 Frequency Pattern . 44
3.6.3 Tree Pattern . 45

3.7 Functional model definition . 46
3.7.1 Data collection . 46
3.7.2 Data processing . 47
3.7.3 Data Visualization . 48

3.8 Remarks . 48

4 Implementation and Validation 51
4.1 Overview . 51
4.2 System overview . 51
4.3 Case Study . 51

4.3.1 Proof of concept setup . 52
4.3.2 Findings . 53

4.4 Discussion . 59

5 Final Remarks 63
5.1 Further Work . 63
5.2 Conclusions . 63

Bibliography 65

Glossary 71

Appendix 72

A Appendix 73

Passive Network Audit Framework vii

List of Figures

1.1 Overview of analysis models for security events awareness. 2
1.2 Network incident response process described in [10] 3
1.3 General workflow of PNA. 6

2.1 General IDS architecture and its components presented in [21] 11
2.2 Characteristics of Intrusion detection systems presented in [21] 12
2.3 Organization of a generalized Intrusion detection systems presented in [9] and [62]. 13
2.4 Classification of detection models in IDS. 15
2.5 Functional model of generic anomaly based IDS described in [30]. 16
2.6 Interoperating Intrusion Detection and Response (IDR) scenarios described [15]. . 21
2.7 General Common Intrusion Detection Framework (CIDF) architecture for IDS de-

scribed [15] . 22
2.8 Example of CIDF messages and the corresponding encoding 22
2.9 Data mining process of building IDS models described in [44]. 23
2.10 Example of association rule and frequent episode 23
2.11 Event Calculus (EC) framework functional model proposed in [71] 25
2.12 Security rule specification architecture of framework presented in [52] 26
2.13 Alert post-processing framework architecture proposed in [76]. 27
2.14 Alert post-processing framework proposed in [76]. Preparation phase. 27
2.15 Alert post-processing framework proposed in [76]. Clustering Phase: Simple and

advanced modes. 28
2.16 Alert post-processing framework proposed in [76]. Visualization phase. 28
2.17 Passive Network Appliance functional model. 30

3.1 Passive Network Audit Framework (PNAF) architecture 32
3.2 Passive Network Audit Framework components . 33
3.3 Sequence diagram of Data Capture Module. 33
3.4 Sequence diagram of Data Processing Module. 35
3.5 Sequence diagram of Data Visualization Module. 36
3.6 Short sequence concept and PNA mapping example 44
3.7 Tree pattern trainer and detectors algorithms proposed in [54]. 46
3.8 PNAF workflow model . 47
3.9 PNAF audit data structure used for intermediate data correlation 48

4.1 Execution times of PNAF. Parallel and Single execution comparison. 56
4.2 Execution times behaviour for Single and Parallel full executions. 56
4.3 Execution times of PNAF. Full and Instance-only execution comparison 57
4.4 Percentage of the whole execution time that PNAF tasks take to process data. . . 57
4.5 Execution times of Data Processing Module (DPM) tasks 57

A.1 PNAF Audit Actual Output (Dashboard). 73
A.2 PNAF Audit Data structure visualization. 74

viii Passive Network Audit Framework

LIST OF FIGURES

A.3 PNAF Audit Vulnerability Assessment. 75
A.4 PNAF Audit Data. Blacklist results. (IP reputation). 75
A.5 PNAF Audit Data. Blacklist results. (Domain reputation). 76
A.6 PNAF Audit Data. IDS Events Dataset. 76
A.7 PNAF Tool dataset (group 1). 77
A.8 PNAF Tool dataset (group 2). 77
A.9 IDS Performance comparison . 78
A.10 Hard disk read/write transactions, and CPU core usage during reading phase . . . 78
A.11 Hard disk read/write transactions, and CPU core usage during processing phase . 79

Passive Network Audit Framework ix

List of Tables

2.1 Summary of taxonomy definitions to consider into PNA framework 14
2.2 Comparative analysis of misuse-based intrusion detection approaches described in

[14]. 16
2.3 Comparative analysis of anomaly-based intrusion detection approaches described in

[14] . 19
2.4 Example of rule specifications for policy checking 26
2.5 Summary of useful features from some existing detection/monitoring frameworks . 30

3.1 Toolset used within the framework. 39
3.2 Attributes used to create the sequences . 46

4.1 Case Study. Logical and physical infrastructure . 52
4.2 Case Study. Input datasets (sample captures) characteristics 52
4.3 Case Study. Audit components . 52
4.4 Case Study. Network analysis tools . 53
4.5 Case Study. anomaly detection dataset . 53
4.6 Case study. PNAF features evaluation. 55
4.7 Case Study. Accuracy evaluation . 59
4.8 Case Study. Accuracy evaluation . 59

x Passive Network Audit Framework

Listings

2.1 Example of IDS signature (Snort/Suricata rule published by Fox-IT) 15
2.2 Mapping of Snort rule into EC-based specification 25
3.1 PNAF rules specification . 40
3.2 Example of PNAF rules . 40
3.3 PNAF dictionary specification . 40
3.4 Example of PNAF dictionary . 41
3.5 PNAF blacklist specification . 41
3.6 Example of PNAF blacklist . 41

Passive Network Audit Framework xi

List of Algorithms

1 PNAF Misuse-based . 42
2 PNAF Tokenization process . 42

xii Passive Network Audit Framework

Acronynms

PNAF Passive Network Audit Framework

PNA Passive Network Audit

PND Passive Network Discovery

NSM Network Security Monitoring

IDS Intrusion Detection Systems

IPS Intrusion Prevention Systems

NIDS Network Intrusion Detection Systems

NFA Network Flow Analysis

DPI Deep Packet Inspection

SIEM Security Information and Event Management

SIM Security Information Manager

SEM Security Event Manager

ML Machine Learning

CIDF Common Intrusion Detection Framework

IDWG Intrusion Detection working Group

CISL Common Intrusion Specification Language

IDXP Intrusion Detection eXchange Protocol

IDMEF Intrusion Detection Message Exchange Format

IDR Intrusion Detection and Response

TCP Transmission Control Protocol

EC Event Calculus

SME Small and Medium Enterprises

DCM Data Capture Module

DPM Data Processing Module

DVM Data Visualization Module

NTCE Network Traffic Capture Engine

Passive Network Audit Framework xiii

LIST OF ALGORITHMS

NTPE Network Traffic Processing Engine

NPEE Network Profiling and Enumeration Engine

IDSE Intrusion Detection System Engine

NFAE Network Flow Analysis Engine

DPIE Deep Packet Inspection Engine

IDCE Intermediate Data Correlation Engine

NSAE Network Security Audit Engine

GSVE Graphic Security Visualization Engine

SARE Security Audit Report Engine

CIDR Classless Inter-Domain Routing

OS Operating System

HTTP Hypertext Transfer Protocol

DNS Domain Name System

TLS Transport Layer Security

JSON JavaScript Object Notation

API Application Programming Interface

CPAN Comprehensive Perl Archive Network

CVE Common Vulnerabilities and Exposures

CSV Comma-Separated Value

IP Internet Protocol

UDP User Datagram Protocol

xiv Passive Network Audit Framework

Chapter 1

Introduction

Intrusion Detection is a field of Information Security introduced some decades ago. Some of the
very first versions of Intrusion Detection Systems (IDS) prototypes were introduced in the early
70’s by Anderson [4], [5], and over the last decades new models have been used as a part of the
security strategies within organizations. IDS aim to identify and detect security issues within
computer systems, network environments or information systems in general. According to Debar
et al. [21], the task of IDS is to monitor the usage of such systems and to detect the apparition of
insecure states. Moreover, IDS detect attempts and active misuse by legitimate users or external
parties to abuse privileges or exploit security vulnerabilities.

Depending on the way security issues are detected, IDS can be classified in two main categories:
misuse-based and anomaly-based detection. In general, the triggering of misuse and anomaly based
security alerts depend on predefined patterns and behaviours exceeding normal thresholds, respec-
tively. Moreover, as it will be addressed in detail on Chapter 2, there are different taxonomies that
describe standard features of IDS and the capabilities that they can provide. Complex prototypes
can combine these models in order to implement IDS with larger scope. In fact, features of modern
IDS have evolved over the years in such a way that, novel and improved detection models are used
in order to detect new security threats. However, the fact that not only data networks are more
complex at present days, but also the way network protocols are implemented and the amount of
information that needs to be analyzed, imply that security threats are more difficult to identify
as well.

The incursion of detection complexity implies that IDS detection mechanisms might not be
enough to identify security threats and their full context. Hence, new technologies have emerged
in order to complement detection systems. These technologies implement new approaches in de-
tection methods based on different techniques such as patterns analysis, data logs processing,
network statistics, structured traffic analysis, data aggregation, etc. However, it is important to
mention that they are not IDS themselves, but they provide complementary information based on
additional data sources. In practice, some of the aforementioned approaches are represented by
Network Security Monitoring (NSM), Security Information and Event Management (SIEM) and
Passive Network Audit (PNA). These three approaches aim to get awareness of security context
with slight differences in methods and focus, sharing features that can be used in different ways de-
pending on the context of analysis. Figure 1.1 presents an overview of this relationship. Moreover,
these relatively recent technologies have played an important role within security mechanisms of
enterprises, since they are now able to merge a set of threat identification datasets from different
sources (e.g. IDS, Firewalls, OS, Applications, Network devices, etc.) into one single point of
analysis and provide an structured platform for data analysis.

Passive Network Audit Framework 1

CHAPTER 1. INTRODUCTION

Figure 1.1: Overview of analysis models for security events awareness.

1.1 Network Security Monitoring (NSM)

NSM is a detection and monitoring model focused on the analysis of network traffic activity. This
concept has been developed at the same time new detection technologies have emerged to be ap-
plied into security tools. NSM includes a set of processes and data analysis techniques. It defines
guidelines and methods of how communication and security devices can be deployed over the net-
work in such a way that security monitoring can be performed in an effective way. Furthermore, it
defines how the information generated by such devices is processed and how it can be interpreted
in order to create meaningful information.

Depending on diverse factors such as network characteristics, protocols and even budgets,
among others, NSM describes the general issues to define a monitoring framework. In this con-
text, different tools and techniques can be used on similar environments while the same monitoring
requirements are met. For instance, there is a set of open source tools that can be used in order
to deploy a NSM infrastructure, some of them working as middle layer between detection engines
and front-ends for data analysis. It has to be emphasized that NSM describes not only the tools
that can be used, but also how, when and why to use them.

Tools like Sguil [88] have been widely deployed among network monitoring infrastructures.
Sguil is an open source tool that combines some passive detection techniques and provides to net-
work analysts an interface to perform a deep packet inspection and signature-based alert analysis.
Moreover, open source IDS such as Snort [70] and Suricata [61] are also widely used on NSM
tools. The key factor that should be emphasized is that NSM is a multilayer process in which, for
example, IDS are just part of the whole monitoring environment, since other tools with different
approaches such as Argus [68], Pads [73], Sancp [20], etc, use passive analysis techniques as well,
in order to complement data generated by IDS.

Figure 1.2 shows an approach of the Network Incident Response Process, in which NSM takes
place within the Detection phase, playing a role in two different ways:

2 Passive Network Audit Framework

CHAPTER 1. INTRODUCTION

Figure 1.2: Network incident response process described in [10]

1. Short term incident containment: Steps taken immediately upon confirmation that
intrusion has occurred.

2. Emergency: Operations that look for additional intrusion patterns. It is a validation
mechanism able to scope the extent of the incident, in other words it provides the evidence
of malicious activity.

It is very important to mention that NSM takes into account not only a set of analysis tech-
niques, but also deployment considerations including threats models, monitoring zones, deploy-
ment locations, risk, incident response procedures, etc. as crucial part of NSM successful imple-
mentation. Thus, in order to gather data that eventually will trigger alerts and produce statistical
information, NSM sensors should be placed into specific locations within the network infrastruc-
ture. Furthermore, the actual useful data that can be generated depends on the amount and
kind of traffic collected by sensors, which also are directly linked to the deployment location. The
Reference Intrusion Model proposed in [10] includes the following types of data:

1. Full content data: Logging of every single bit of network traffic to perform forensics analysis.
In practice this is difficult to achieve due to performance issues, specially on large networks.

2. Session data: Network traffic aggregates, protocol breakdown and distributions.

3. Statistical data: Connection pair records as part of conversation between two hosts. It takes
the concept of flow as filtering parameter (i.e. proto, src ip, src port, dst ip, dst port)

4. Alert data: Generated by Intrusion Detection Systems. Provides alerts as indication of
anomalous activities. It serves as base point of further investigations.

For each type of data, a set of tools and techniques can be used in order to extract useful datasets.
The goal is to correlate the information generated on each stage in order to produce meaningful
interpretations about security events. Thus, depth of NSM depends on the requirements of the
monitoring infrastructure. Bejtlich [11], [10] presents two complete guides of aspects that should
be taken into account in order to deploy a monitoring infrastructure, including techniques and
tools that can be used, and further considerations to get the best detection results.

Certainly, intrusion detection is a sub process part of Network Security Monitoring. In order
to understand the context, on the one hand, by using NSM it is possible to describe network
security activity either as a general picture (summary of network security-related activity) or in
a very specific way for certain purposes and environments (structured traffic analysis, forensics,

Passive Network Audit Framework 3

CHAPTER 1. INTRODUCTION

etc). On the other hand, intrusion detection is focused on the way how these security events
are identified. In fact, NSM may use intrusion detection techniques such as signature-based and
anomaly-based IDS (which will be discussed in Chapter 2). Some discussions1 emphasize the fact
that IDS developers want “Immaculate Detection” whereas NSM practitioners want “Immaculate
Collection”. Certainly there is no product that provides 100% of accuracy and effectiveness, hence
further investigations need to be performed. For example, despite the fact that a very complex
IDS can trigger security alerts, depending on the situation, an additional investigation might be
needed, hence NSM is applied in order to provide evidence and to interpret the incident with a
more detailed or full context.

1.2 Security Information and Event Management (SIEM)

Process Mining is a research area focused on the analysis of event logs that aims to get knowledge
about the business processes. Moreover the purpose of process mining is to develop methods and
tools that provide the capabilities for discovering process and to exploit the data recorded into
event logs. In order to achieve that purpose, techniques of Data mining, which refers to the process
of extracting descriptive models from large stores of data [25], are applied in different ways through
the use of approaches such as statistical analysis and machine learning, both described in Chapter
2. In the field on Information Systems, specifically within Information Security, process mining
can be applied in order to analyze log datasets generated by security sources such as Operating
Systems, Firewalls, IDS, Intrusion Prevention Systems (IPS), communication devices, etc.

There are different approaches to apply process mining for intrusion detection purposes. The
so-called Security Information and Event Management (SIEM), Security Event Manager (SEM),
Security Information Manager (SIM) are examples of such process mining approaches. In practice,
there exist implementations based on open source tools [86], as well as commercial solutions [85],
[49], [53] that provide log management and SIEM capabilities for both, general and security-related
events. In fact, in order to provide a wider framework, SIEM combines features of both SIM and
SEM which in general are focused on real-time analysis and long-term storage respectively. Thus,
among the most important capabilities that SIEM provides are:

• Data aggregation: Data from different sources is used as input data that feeds log analysis
engines. Such data may contain not only security related event information, but also general
system logs, operational system trails, etc.

• Correlation: Based on different data sources, a meaningful interpretation can be generated
by linking events taking into account common parameters and attributes.

• Alerting: When an anomaly or predefined behaviour is detected, then an alert can be trig-
gered in order to notify a possible security issue. This can be done by using either IDS
datasets or by post analysis of other security logs (e.g. firewalls).

• Compliance: Auditing techniques can be applied in order to assess whether specific proce-
dures are followed within a system or network environment.

• Retention: Historical data is stored in order to feed datasets for data correlation over the
time. This is specially useful for forensics and incident response purposes.

• Forensics analysis: Analysis of different datasets are correlated based on a timeline in order
to reconstruct events that happened as part of security incidents.

• Indexing: Uses special techniques to facilitate indexing and searching information on aggre-
gated data. This is a vital task since data aggregation and retention imply huge amount of
data to analyze.

1Post by Richard Bejtlich’s on TaoSecurity blog. http://taosecurity.blogspot.nl/2007/03/

nsm-and-intrusion-detection-differences.html

4 Passive Network Audit Framework

http://taosecurity.blogspot.nl/2007/03/nsm-and-intrusion-detection-differences.html
http://taosecurity.blogspot.nl/2007/03/nsm-and-intrusion-detection-differences.html

CHAPTER 1. INTRODUCTION

• Intelligence: By combining the aforementioned capabilities, a better, detailed and meaningful
context can be described in order to feed a knowledge database for high-level interpretations
suitable for decision making processes.

Furthermore, it is important to mention that log analysis processes imply the use of passive
methods of data processing since the source dataset contains logs of events that already happened,
and there is no any active interaction with the network environment at all.

1.3 Passive Network Audit (PNA)

There is a similar approach in which both log analysis and data correlation are involved as well,
the so-called PNA. Although typically some SIEM implementations [85], [49], [53], [7] include
PNA as part of their capabilities, PNA itself includes additional processes and it can be applied
independently without all the features of SIEM. Thus, despite the fact that PNA can be consid-
ered as a part of unified SIEM system, in this thesis PNA will be distinguished as independent
term, emphasizing the key characteristics that PNA provides as individual component.

PNA is focused on network traffic analysis captured as source dataset, mainly as offline-
analysis. Thus, a network traffic sample of fixed period is analyzed by characterizing network
components and tracking their activities. The goal of the analysis is to get an assessment of
network events performed within certain period of time, as well as assess policy compliance based
on predefined baselines. Nevertheless, a real-time analysis is possible, turning PNA into a hybrid
system with some NSM and SIEM features, or in the other way around, by enabling PNA within
SIEM implementation. As it is shown in Figure 1.1, there are shared properties among the three
approaches. In the case of PNA and SIEM, capabilities such as log normalization, correlation,
compliance and security assessment are common, however the key differences are described as
follow:

• Unlike normal aggregation process in SIEM, where the system is fed by logs generated by
multiple devices or systems such as Firewalls, OS, IDS, etc, in PNA the input dataset is
the raw network traffic itself. The data aggregation process is performed as internal task in
such a way that different kind of decoded data sources feed analysis engines that PNA may
include to achieve data correlation, compliance and security assessment.

• The single input dataset imply the use of log pre-processing as prior additional task for data
aggregation. This means there are no logs or traces that can be aggregated as input data
directly, but rather raw traffic contains all the information that can be used to produce logs,
in the same or similar way other devices fed normally SIEM systems. This log pre-processing
task may involve traffic decoding, payload extraction and some specific data correlation tasks
at network level. Figure 1.3 shows the general information flow in PNA where additional
pre-processing task can be appreciated before the actual log analysis.

• The focus of PNA is on Assets identification, characterization and tracking, since these are
the entities that will be evaluated as part of an auditing process. Such information can feed
SIEM in order to produce a better intelligence about events in a wider context.

PNA may also be referred as Passive Network Discovery (PND). Arkin [8] describes an overview
about PND and monitoring systems, discussing its limitations and giving a criticism about some
current weaknesses on this technology. Usually, the goal of passive technologies is to answer the
questions “What is on the enterprise network?”, “Who is on the enterprise network?” and “What
is being done on the enterprise network?”. To this end, new technologies have emerged, providing
capabilities to describe (a) Active network elements and their properties, (b) Active network
services and their versions, (c) Distances between active network elements and the monitoring
point, (d) Active client-based software and their versions, (e) Network utilization information, (f)

Passive Network Audit Framework 5

CHAPTER 1. INTRODUCTION

Figure 1.3: General workflow of PNA.

Vulnerabilities found for network elements residing on the monitoring network. In general terms
such information can be used for the following purposes:

• Network Audit

• Network utilization information

• Network forensics

• Vulnerability discovery

• Network operation profiling

1.3.1 Strengths of PNA

• Passive technology: This feature represents one of the best advantages of PNA, since be-
haviour, integrity or characteristics of the monitored network are not affected by the moni-
toring infrastructure. This is possible since there is not any single active interaction between
monitors and monitoring targets.

• Real-time operation: The monitoring process can be performed in real-time as the network
activities occur.

• Zero performance impact: No additional workload to the monitored network is involved.
In fact, workload implied by the monitoring infrastructure is independent of the working
network environment.

• Full data processing: It is possible to perform analysis over all network layers.

• Detection of active network elements: It is possible to identify network elements (e.g. hosts,
communication devices, etc.) participating on network communications.

• Granular network communication: PND is able to provide the knowledge needed to generate
information about network infrastructure utilization.

• Abnormality Detection: By using the collected data, it is possible to perform statistical
analysis in order to identify abnormal activities within the network.

1.3.2 Weaknesses of PNA

• Limited analysis: the analysis depends on the data that has been collected. If any data
traffic related to certain event is not collected, then event identification might be limited to
partial interpretations and even out of the scope of the analysis.

• Not everything can be passively determined: Some network features can not be determined
by just analyzing the traffic if there is no enough data for interpretation. For instance, data
for vulnerability discovery or system’s attributes identification.

6 Passive Network Audit Framework

CHAPTER 1. INTRODUCTION

• Performance issues: In large networks, passive monitoring becomes a hard task due to the
amount of traffic that needs to be collected. Furthermore, there are important issues on full
capture analysis schemes (e.g. performance).

• Reliability and accuracy: Passive analysis is not completely accurate since some identification
processes are based on assumptions that may lead to wrong interpretations, for instance, OS
detection might be ambiguous, hence inaccurate.

Additionally, De Montigny-Leboeuf et al. [56] mention three categories of passive packet mon-
itoring: (1) Singleton: Tests conducted on a single packet emitted by a host. It typically looks for
default values of header fields such that information about the sender is retrieved. The general
algorithm to perform a singleton is by monitoring traffic with specific filter and then derive infor-
mation once packets are captured. (2) Sample: This test involves samples of packets generated
by a host. Its purpose is to analyze how packets change while they are transmitted. The gen-
eral algorithm consists in traffic monitoring with specific filters, then hold in memory all received
packets by source address, to finally derive information from the sample. (3) Stimulus-Response:
This test consists in listening communication in both directions, creating a stimulus-response pair.
The analysis takes into account facts such as stimulus with no response, as well as response with
no stimulus. The general algorithm consist as follows: monitoring the traffic with specific filter
satisfying either the stimulus or response, then hold the stimulus and look for its corresponding
response pair (conversely hold the response and check it corresponding stimulus), to infer infor-
mation about the event.

The important aspects of applying PND cited in [56] are: (a) Discover active nodes, (b) Sys-
tem uptime, (c) OS identification, (d) Network elements roles, (d) Services offered, (e) protocols
supported and (f) IP network configuration.

Moreover, Gula [33] describes two categories of vulnerabilities that can be identified by using
PND. On the one hand, Server based vulnerabilities: that are based on the monitoring traffic
focused on the data generated by servers within the network. On the other hand, Client based
vulnerabilities: that can be used to identify security flaws based on information from clients, for in-
stance, by checking web browser user-agents, email agents, etc. On the other hand, vulnerabilities
over communication devices can be discovered, for example, policies violation or misconfiguration
of firewalls, routers, and so on, by checking how the communications between hosts are being
performed. A complementary guide of vulnerability correlation with IDS is presented in [34].

There are some existing PNA based implementations such as Real-Time Network Awareness
(RNA) by Sourcefire [74], Network Vulnerability Observer (NeVO) (old) [22] and Passive Vulner-
ability Scanner (PVS) [81] and ArcSight ESM [6]. Moreover, services such as Fox-IT ProtAct [29]
are available on the market as well. All these technologies implement passive network monitoring
techniques.

1.4 Problem Statement

There are different approaches aimed to get awareness about security context within organiza-
tions to different extents. On the one hand a variety of intrusion detection techniques can be
used through existing IDS implementations such as Snort, Suricata and Bro. On the other hand,
commercial products and services are available on the market to get information about security
events that happen within the network. Such technologies provide different capabilities and imply
different levels of complexity and flexibility, since they may combine features of NSM, SIEM and
PNA. When an enterprise needs to get awareness of security events, it can choose among a set
of solutions which indeed may comply with its requirements, however not necessarily in the most
effective and suitable way. Furthermore, despite the fact that solutions may provide powerful

Passive Network Audit Framework 7

CHAPTER 1. INTRODUCTION

analysis capabilities, they may involve additional tasks which may turn the whole process incon-
venient or even unfeasible.

Since detection phase may involve automated, semi-automated and even manual processes,
in which data is processed in different ways, then an extensive analysis is needed to propose a
combined technique that could impact in a positive way the ease, suitability and effectiveness of
Passive Network Audit models without the need to be implemented as a part of complex SIEM
environments.

Short descriptions of these notions (NSM, SIEM and PNA) have shown that information
retrieval of security context is not perfect. Hence, it is necessary to determine exactly what is the
actual gap and what technologies and methods can be used to fill it. In this regard, taking into
account the capabilities of existing detection techniques and aiming the definition of an improved
Passive Network Audit framework, the research question of this work is:

What is the actual gap between NSM, SIEM and PNA capabilities and
how it can be filled in order to deploy a streamlined, flexible and effective
PNA framework capable to get information about security context?

To answer this, the following support questions have been defined, which will be addressed in
this research:

1. What are the most relevant and suitable characteristics to define an accurate detection frame-
work? In order to answer this question, some detection taxonomies and existing detection
frameworks will be analyzed to describe useful and common characteristics that general
detection and analysis framework should include.

2. How can detection models be combined to define a Passive Network Audit Process? To
answer this question, an analysis of existing detection frameworks will be performed and
findings will be taken into consideration in order to define specific tasks and features that
apply on PNA context.

3. What kind of detection techniques can be used taking into account network environment data?
This question will be answered by analyzing a set of tools that are able to process network
traffic. A selection criteria will be defined such that specific-purpose tools are used in specific
ways within the PNA framework in order to produce useful datasets that can be analyzed
for PNA purposes.

4. Are current widely deployed IDS technologies good enough to get awareness of security con-
text? In order to answer this question, this work will evaluate some detection approaches
that rely on pure IDS alerts (misused-based), including some NSM implementation that use
IDS as core detection engine. Thus, a comparison will be performed in order to identify
differences between information from IDS and passive tools.

5. How can anomaly detection algorithms be used in PNA in order to identify patterns accu-
rately? This question will be tackled by testing an anomaly detection algorithm based on
data mining. The main purpose is actually to test not only whether anomaly-based methods
can be applied for auditing processes, but also to find specific features that can provide
criteria for selection of anomaly-based techniques in PNA context.

1.5 Motivation

In general terms, the need of an efficient and simple Passive Network Audit technology is motivated
by the fact that this technique addresses different issues in security threats detection such as:

8 Passive Network Audit Framework

CHAPTER 1. INTRODUCTION

• There are no absolute guarantees of the correct compliance of the security controls within
the network.

• Conventional detection technologies may not be enough to detect some threats such as zero-
day attacks since they are unknown.

• Real-time monitoring and interpretation is very hard to achieve, thus security vulnerabilities
might be identified after an incident.

• Some active detection technology such as penetration testing may imply disruptive impacts
on production systems. In this sense, unsuitable security mechanism for both prevention
and reaction may be placed over the network.

• Some existing technologies implement PNA features, however they are part of complex SIEM
systems that may increase the complexity of the auditing process as well.

In spite of the existence of some commercial and open Network Audit technologies, it is intended to
create the aforementioned framework with specific capabilities to gather information from network
traffic, not only in an efficient way but also with less complexity and acceptable reliability of
security assessment.

1.6 Outline

In this thesis, a Passive Network Audit Framework, based on an integration of different detection
techniques, will be presented. It is intended to provide not only a feasible way to get an assess-
ment of the general security status of the network, but also to address the issues of conventional
deployments, such as complexity and long processes, by creating an automated functional model.
In this section has been tackled a basic approach to concepts that will help to understand the
motivation of this research. The remainder of chapters of this thesis are structured as follows.
Chapter 2 presents an overview intrusion detection taxonomies used as reference of background
context of PNA. Moreover, this chapter presents some existing frameworks that involve passive
detection processes and passive technologies. These existing approaches are presented in order
to show features that can be taken for the proposed PNA framework. Chapter 3 presents the
PNA framework definition, including functional model and detailed modules features. Chapter 4
presents a practical implementation, its characteristics and a case study that evaluates the features
of the framework. This Chapter also includes a discussion about suitability, accuracy, performance,
limitations and issues identified during experiments. Finally, Chapter 5 presents final conclusions
that clarify the findings of this work with regard to the research question.

Passive Network Audit Framework 9

Chapter 2

Network Audit and Intrusion
Detection Taxonomy

2.1 Overview

The goal of this chapter is to address some intrusion detection taxonomies that describe common
characteristics of intrusion detection models. This background will be useful to take some con-
siderations about detection and analysis approaches for the proposed PNA framework. Thus, the
workflow of this Chapter is as follows: first are presented intrusion detection taxonomies that de-
fine common IDS characteristics. Taking this into account, as well as some existing classifications
that are be presented in Section 2.2, then a summarized classification of intrusion detection models
are described. Finally, some examples of existing intrusion detection frameworks are presented in
such a way that specific detection and analysis features can be considered, in regard with the
intended PNA framework that is described in Chapter 3.

2.2 Taxonomy of Intrusion Detection Models

Despite the fact that Intrusion Detection Systems have evolved over the years, there are common
model specifications such as architecture, components and measurable properties that state the
general characteristics that IDS should meet. In addition, IDS classifications may be defined from
different points of view (e.g. functional, location, etc.), splitting intrusion detection models accord-
ing with the principles they follow and features that they provide. In order to describe a base point
of common IDS properties, three taxonomies will be tackled in this section. Each taxonomy de-
scribes three key aspects about IDS specification: architecture, components and measurable proper-
ties.

Figure 2.1: General IDS architecture and its com-
ponents presented in [21]

The first taxonomy studied on this the-
sis is presented by Debar et al. [21]. It de-
scribes IDS architecture as an environment
that includes a detector that processes infor-
mation coming from the system that is to
be protected. This detector uses three types
of information: Database (long-term informa-
tion: knowledge base of attacks); configura-
tion (defines the current state of the system)
and Audits (events description). The goal of
this detector component is to filter the infor-
mation from the audit trail in order to identify

Passive Network Audit Framework 11

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

security-related interpretations.

Moreover, in order to evaluate IDS, this taxonomy defines a set of measurable properties:
Accuracy, Performance, Completeness, Fault Tolerance and Timeliness.

Furthermore, four main components are described: (1) Detection method: Describes the
characteristics of the analyzer. (2) Behaviour on detection: Describes the response of the intrusion
detection system. (3) Audit source location: Distinguishes the kind of input data. (4) Usage
frequency: Describes the monitoring way of the analyzer. In addition, based on these components,
IDS can be classified into eight sub-types grouped in two main sets: (a) functional and (b) non-
functional characteristics. In Figure 2.1 is depicted the architecture of a simple IDS described in
[21], whereas Figure 2.2 shows the resulting classification.

Figure 2.2: Characteristics of Intrusion detection systems presented in [21]

The key aspects of this approach that can be considered are: first, the modular design in which
a system feeds the detector based on some configuration parameters. Since there is a long-term
storage database, this taxonomy implies both NSM and SIEM capabilities. However, the coun-
termeasure module can be considered just partially, since it may imply active actions as feedback
from the IDS model, thus in the PNA context this feedback would be a different output data
such as recommendations. Second, the measurable properties can be used to define the evaluation
criteria for the PNA framework. Finally, the proposed classification provides functional and non-
functional characteristics, so the summarized classification can take this into account.

The second taxonomy is presented by Catania et al. [14]. It describes the general archi-
tecture of IDS as a set of modules:

• Traffic Data Acquisition : Module for data collection.

• Traffic Features Generator : Traffic features extractor. It includes different layers: low-level
features (IP header), high-level features (traffic information). Furthermore, additional feature
layers can be defined according with the source of input data: packet features (raw packet
headers), payload features (payload data)

• Incident Detector : Data processing module intended to identify intrusive activities.

• Traffic Model Generator : Uses data from Incident Detector as a reference in order to perform
a comparison for incident identification purposes.

12 Passive Network Audit Framework

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

• Response Management : Module to execution actions in response of a possible intrusions.

Whereas the set of measurable properties is comprised by Prediction accuracy (detection
quality), Processing time (event processing rate), Adaptability (detection of new attacks) and
Resource consumption (memory and storage usage). Finally, this taxonomy describes the main
components, which according with the authors is a summary of elements “commonly accepted
in the intrusion detection research community”. These elements are:

• Detection Method: Determines the two main detection approaches: anomaly-based and
misuse-based

• Model acquisition: The way knowledge is produced: human-based or automatic generation

• Usage Frequency: Detection execution: real time or batch (periodic analysis)

• Architecture.Data collection and processing perspective: centralized or distributed

In this taxonomy, again the modular architecture is described in order to perform the infor-
mation flow through focused tasks. This can be mapped into PNA context in such a way that
modules perform specific tasks over input dataset (i.e. network traffic decoding, pre-processing,
post-processing, model generation, interpretation). Moreover, similar measurable properties (from
the first taxonomy) are described, hence they are taken into account to consolidate the summarized
list of properties for the framework. Finally, components are consistent as well, in the sense that
similar concepts such as detection method and usage frequency are considered, thus a summarized
classification is consolidated as well.

The third taxonomy is presented by Axelsson [9] and Patcha et al. [62]. It describes a
generalized model of IDS. Figure 2.3 shows this approach in which there are diverse compo-
nents within IDS architecture with similarities related to the aforementioned taxonomies. In
this case, the elements have the following roles: Audit data collection (module used to collect
data in order to be analyzed by detection algorithms), Audit data storage (module to store audit
data for further reference), Analysis and detection (module where all the detection algorithms
are implemented), Configuration data (defines operation parameters of the whole IDS), Reference
data (stores parameters of operation of the detection module e.g signatures, thresholds, baseline
datasets), Active/processing data (stores intermediate results about the detection dataset), Alarm
(module to report and handle the identified suspicious events).

Figure 2.3: Organization of a generalized Intrusion detection systems presented in [9] and [62].

Passive Network Audit Framework 13

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

In summary, these approaches define similar components which represent features of both NSM
and SIEM. First, the whole system depends on predefined configuration and reference modules,
which are shared features mentioned in all presented taxonomies. Moreover, the core detection
engine is represented by different modules that manage audit data which is analyzed to trigger
alarms and produce feedback. Taking all these aspects into account, then a summary of properties
to consider into the PNA framework specification is described as follows in Table 2.1.

Architecture Measurable properties Components
Modular design, storage and
configuration modules

Accuracy, Performance, Time-
liness

Detection Method, Usage Fre-
quency, Behaviour of detec-
tion, Audit source location

Table 2.1: Summary of taxonomy definitions to consider into PNA framework

2.3 Classification of Detection Models

The aforementioned taxonomies have described the common features of IDS as a generalized in-
trusion models. The purpose of this section is to describe a general picture and background of
intrusion detection techniques, some of them intended to be used within the framework as core
detection engine.

Intrusion detection models, with respect to the way the anomalous activities are detected, are
commonly grouped into two main detection approaches: Misuse-based and Anomaly-based. Similar
nomenclatures refer such methods as Knowledge-based or detection by appearance [77] (misuse) and
Behaviour-based (anomaly). Furthermore, misuse-based can be considered as black listing since it
defines what is malicious or anomalous in advance, whereas anomaly-based can be considered as
white-list, since it defines the accepted or normal behaviour.

According with Catania et al. [14], in the context of misuse-based models, detection itself relies
on three different techniques Pattern recognition, Implication rule-based and Data mining. It is
which summarized in Table 2.2. In regard with anomaly-based models, Arca-Teodoro et al. [30]
present a classification of anomaly-based detection models. Thus, a summarized classification is
described as follows in Figure 2.4

2.3.1 Misuse-based detection

This detection method applies the previous knowledge that has been accumulated about specific
events in such a way that information about attacks, vulnerabilities, and threats in general can
be retrieved and applied to describe a detection base.

Pattern recognition : It creates the so-called signatures generated from a base knowledge by
looking for specific patterns that match from incoming network packets or command sequences.
On the one hand, the advantage of such a model is the fact that since the signatures contain
very specific matching patterns, then detection for well known attacks is achieved in a reliable
and accurate way. On the other hand, since the detection is limited to the detection parameters
defined within the signature, then a drawback is represented by the fact that signatures for all
known attacks need to be contained within the detection engine.

14 Passive Network Audit Framework

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

Figure 2.4: Classification of detection models in IDS.

Furthermore, signatures need to be updated and aggregation of new signatures for new at-
tacks is needed as well, otherwise new attacks will not be detected. It has to be emphasized
that although signatures describe very specific attacks, the granularity can be changed in order
to generalize the matching pattern for attacks that share some detection patterns. However, this
generalization process implies the triggering of false positives, meaning that events that actually
did not happen are reported by the IDS. Listing 2.1 shows an example of IDS signature described
by a Snort rule that allows to detect successful exploitation of a critical OpenSSL vulnerability
found in April 2014, CVE-2014-0160 1. Most of the NSM infrastructures are based on signature-
based detection model since they are usually easier to deploy and manage. In fact, two of the most
widely used IDS, Snort and Suricata, implement this type of detection technique. Since these
tools are intended to be part of PNA framework, then it is important to take into account the
aforementioned features, in order to define the scope of the framework. Further details, of how
these tools are used within the framework, are described in Chapter 3.

a l e r t tcp any any −> any any (msg:”FOX−SRT − Flowbit − TLS−SSL Cl i en t He l lo ” ;
f l o w : e s t a b l i s h e d ; d s i z e :< 500 ; c on t en t : ” |16 03 | ” ; depth:2 ; b y t e t e s t : 1 , <=, 2 ,
3 ; b y t e t e s t : 1 , != , 2 , 1 ; c on t en t : ” | 0 1 | ” ; o f f s e t : 5 ; depth:1 ; c on t en t : ” | 0 3 | ” ;
o f f s e t : 9 ; b y t e t e s t : 1 , <=, 3 , 10 ; b y t e t e s t : 1 , != , 2 , 9 ; c on t en t : ” |00 0 f 00 | ” ;
f l o w b i t s : s e t , f o x s s l s e s s i o n ; f l o w b i t s : n o a l e r t ; t h r e s h o l d : t y p e l im i t , t rack
by src , count 1 , seconds 60 ; r e f e r e n c e : c v e ,2014−0160; c l a s s type :bad−unknown ;
s i d : 21001130; r e v : 9 ;)

Listing 2.1: Example of IDS signature (Snort/Suricata rule published by Fox-IT)

Implication rule-based : This technique defines event-rules that describe a chain of network
events, so that detection engine may infer an intrusion when a series of network events matches with
such description. Emerald [65] is an example of approach using implication rules. This technique
is used by Bro IDS (also part of PNA framework), and it is a feature that can complement
signature-based detection in order to extend the context of security events.

Data mining : This technique aims to eliminate the need of manually created traffic models by
automatically building them based in on some references such as protocol and event specification.
Hybrid approach uses data mining to extract meaningful information about security events. It

1Critical security vulnerability reported on April, 8th 2014. http://heartbleed.com/. Fox-IT
published a set of Snort/Suricata rules to detect this attack. http://blog.fox-it.com/2014/04/08/

openssl-heartbleed-bug-live-blog/

Passive Network Audit Framework 15

http://heartbleed.com/
http://blog.fox-it.com/2014/04/08/openssl-heartbleed-bug-live-blog/
http://blog.fox-it.com/2014/04/08/openssl-heartbleed-bug-live-blog/

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

has to be emphasized that, although data mining is typically used in anomaly-based detection,
according with Catania et al. [14], it can be applied on misuse-based as well. Approaches based
on as Artificial Neural Networks (ANN) [13], [48] for feature extraction, and Genetic Algorithms
(GA) [1] for model structure designing. Both examples use data mining to analyze, classify and
extract meaningful information related to security incidents.

Table 2.2 shows a comparative analysis of some existing approaches of misuse-based intrusion
detection based on taxonomy presented in [14]. In order to provide an overview of the scope of
such approaches, the following features are described: detection technique, usage frequency, model
acquisition and type of analysis. In the list, it has to be noted that the work presented by Roesch
[69] is the practical implementation of Snort IDS, which is also intended to be part of the core
detection engine within PNA framework and it will provide data aggregation of IDS alerts. The
characteristics of the signatures used for pattern identification are described in Chapter 3.

Authors Misuse detection
technique

Usage Fre-
quency

Model acquisition / adapt-
ability

Scope of analysis

Lindqvist
and Porras
[47]

Implication rules Real-time Human: rules written by
experts

Low and high-level:
packet, payload, flow

Roesch [69] Pattern Signature Real-time Human: signature patterns
written by experts

Low: packet, payload

Cannady
[13]

Data mining:ANNs Batch Automatic: retraining
with new attack patterns

Low and high-level:
packet

Li [46] Data mining:GA Batch Automatic: retraining
with new attack patterns

Low and high-level:
packet, flow

Gomez et al.
[31]

Data mining: fuzzy
/ GA

Batch Automatic: retraining
with new attack patterns

Low and high-level:
packet, flow, payload

Table 2.2: Comparative analysis of misuse-based intrusion detection approaches described in [14].

2.3.2 Anomaly-based detection

Anomaly detection methods are based on the analysis of the normal traffic behaviour in such a
way that baseline profiles, described by legitimate network traffic activities, are defined in order
to identify potential anomalous activity. The main feature of this type of detection model is that
they provide the capability to identify unforeseen attacks, such that, unlike misuse-based detection,
there is no the need of specifying detection parameters about attacks themselves. It has to be noted
that the central premise of anomaly detection is that intrusive activity is a subset of anomalous
activity [40]. The ideal case considers all anomalous activities as intrusive activities, however this is
not always the case. In fact there are be four possibilities: (1) Intrusive but not anomalous, (2) Not
intrusive but anomalous, (3) Not intrusive and not anomalous and (4) Intrusive and anomalous.

Figure 2.5: Functional model of generic anomaly
based IDS described in [30].

Although there are different anomaly de-
tection approaches, a generic functional model
is described in Figure 2.5. It includes
the following main components: (a) Param-
eterization: Observed instances are repre-
sented in a pre-stablished form. (b) Train-
ing: the normal or abnormal behaviour is
characterized and the corresponding model
is generated. (c) Detection: the gener-
ated model is compared with the observed
traffic such that if certain deviation ex-
ceeds the threshold, then an alert is trig-
gered.

16 Passive Network Audit Framework

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

It is important to emphasize the fact that, data mining is used in all the techniques under
anomaly-based category presented as part of the classification of detection models (Figure 2.4).
In this category, anomaly-based detection techniques are grouped into three main subcategories:
statistical, knowledge based and Machine learning. The following subsections describe a background
of such subcategories in order to understand what type of techniques can be used in the context
of PNA. In fact, not all of them are intended to be used within the proposed PNA framework,
nevertheless, by taking into consideration the modular design mentioned in Section 2.2, it is
possible to deploy different anomaly-based detection approaches as part of the framework. The
type of dataset that can be used for anomaly detection purposes are described in Chapter 3.

Statistical-based

Garcia-Teodoro et al. [30] mention that the idea of statistical-based detection model is to generate
profiles which describe the stochastic behaviour of the network traffic. The profile includes prop-
erties such as activity intensity measures, audit record distribution measures, categorical measures
and ordinal measures. Typically two profiles are involved playing different roles: the current profile
which correspond to the network traffic observed over the time, and the stored profile that corre-
sponds to the previously stored and trained statistical profile. These profiles are compared using a
function of abnormality of all measures described within the profile. This comparison results into
a score that indeed indicates the degree of irregularity of the event. Here, a predefined threshold is
set, thus, an alert is generated in case of the score exceeds the threshold. The main advantage of
statistical-based technique is that prior knowledge about the normal behaviour of network activity
is not required. The drawback is given by the fact that this approach is susceptible to be trained
by attackers, moreover, the process of parameters and metric definition might be cumbersome.

Knowledge-based

According with Garcia-Teodoro et al. [30], this approach applies the knowledge that has been
accumulated about specific attacks. The so-called Expert systems classify audit data involving
three phases and considering a set of rules. First, attributes and classes are identified from training
data, then classification rules are generated to finally classify audit data based on such rules. This
provides a systematic way to find evidence of vulnerabilities exploitation attempts within the audit
trail. A similar approach uses the concept of specifications to define a set of rules that describe
the normal behaviour. This type of specification can be generated using Finite State Machine
(FSM) methodology that can be implemented by using standard description languages such as
N-grammar, LOTOS and UML. On the one hand, potential advantages of this technique is that
it provides high level of flexibility. On the other hand, the implementation implies cumbersome
processes and time consuming.

Machine learning-based

In general terms, Machine Learning (ML) is a research field in which the purpose is to develop
systems that can improve automatically by themselves with the experience they have gained from
past events, meaning an iterative learning process. It tries to address issues that statistics and
data mining try to solve. As a background [55], [2] about ML concepts, a very general description
of different types of learning methods is presented below:

Supervised learning: It is based on examples as training dataset in order to find a shared
descriptions between positive examples which are not in negative examples. This allows to
identify unforeseen instances. The components involved are the inferred function (classifier)
and an instance (vector). Furthermore two tasks can be performed. Classification: the clas-
sifier tries to determine the class or label that an input vector belongs to. Regression: task

Passive Network Audit Framework 17

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

intended to predict an inferred function from training dataset (e.g. predict the network pro-
tocol given a set of network packet header attributes or traffic parameters).

Unsupervised learning: Unlike supervised learning, unsupervised methods do not rely on
training datasets, but they just take the input data in order to describe regularities.

Reinforcement learning: If the output of a system is comprised by a set of actions, then
a single action itself is not relevant, but what matters is the way such an output sequence
is formed, (i.e. policy that defines a sequence of correct actions to reach a goal). Thus, the
goal of this method is to assess whether the policy is correct and to learn from past actions
in order to generate a new policy.

ML is a strong research are within Information Security field, specifically when it is applied for
intrusion detection processes. Features of ML coincide in some cases with statistical approaches,
however ML not only is intended to build and describe a model, but also to improve the perfor-
mance or execution strategy based on newly acquired information or previous results. Based on
the classification presented on Figure 2.4, the subcategories of ML techniques used in anomaly-
based detection models are describes below:

Bayesian Networks: Bayesian networks represent models that encode probabilistic rela-
tionships among variables of interest [30] and they are used to represent knowledge about
uncertain domain. Bayesian networks are in fact probabilistic graphical models that con-
tains nodes (random variable) and edges (probabilistic dependencies among certain random
variables). For intrusion detection purposes, Bayesian networks are combined with statisti-
cal methods in order to develop detection schemes capable to predict events as consequence
of actions based on prior knowledge and data. Moreover, Bayesian techniques are used for
data classification and false alarm suppression. The accuracy of this method depends on
assumptions based on the behavioral model of the target system, thus any deviation from
these assumptions leads to inaccurate detection. This means that the key factor is to build
an accurate behavioural model, which in fact is not an easy task since it depends on the
complexity of the network as well.

Markov Models:This category comprises two main techniques: On the one hand is Markov
chains: a set of states that are interconnected through transition probabilities which define
the capabilities of the model and its topology. The training phase includes an estimation
of probabilities associated to the transitions, based on the normal behaviour of the target
system. On the other hand, Hidden Markov: a statistical model in which the system being
modeled is assumed to be Markov process with unknown parameters. Such hidden param-
eters needs to be determined from observable parameters. This detection approach usually
has been applied to Host IDS, in which system calls are analyzed, however it can be applied
to network traffic as well.

Neural Networks: This method, applied to network intrusion detection, has been usually
applied in order to predict the behaviour of the user, daemon, processes and so on within the
system based on network traffic patterns. Due to their flexibility and adaptability to changes
within the systems environment, neural network have been studied within the anomaly de-
tection research area. The main advantage is that they can deal with imprecise data and
uncertain information without the need of prior data describing the regularities of the sys-
tem. However, there is a set of drawback with this approach, such as they may fail due to
the lack of data to analyze and they may be slow and hard to train as well.

Fuzzy Logic: These techniques are based on fuzzy set theory and they have been used in
computer security area since the early 90’s. In fuzzy set theory, reasoning is not precise,

18 Passive Network Audit Framework

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

but rather an approximation is deducted from classical predicate logic. Fuzzy logic can be
applied for intrusion detection processes because it is possible to consider diverse measurable
parameters as CPU usage, connection intervals, and so on, in such away they can be described
as fuzzy variables. This is in fact a very effective detection method, specially for recognition
attacks such as port scans, probing, etc. Its main disadvantage is that the rule creation is a
very intensive task.

Genetic Algorithms: Genetic algorithms are described as global search heuristics. It is a
technique used to find approximate solutions for optimization and problem searching. They
are a particular class of evolutionary algorithms. Since genetic algorithms are derived from
evolutionary biology such as inheritance, mutation, selection and recombination, then it is
consider a ML-based technique. In the field of intrusion detection, genetic algorithms are
used in order to distinguish normal traffic from anomalous connections. The main goal is to
provide the capability of deriving classification rules and select the appropriate parameters
for detection processes. The main advantage in IDS is that it is a flexible search method that
uses uses probabilistic methods.

Clustering and outlier detection: Clustering techniques allow to find patterns in unla-
beled data with many dimensions, by grouping the observed data into clusters based on the
similarity or distance measure. By using clustering techniques it is possible to learn from audit
data (e.g. network traffic), to eventually identify intrusions based on the generated knowledge
without the need of explicit description provided in advance. There are different approaches
to apply clustering into intrusion detection models. One of them uses two datasets, normal
and anomalous. The other approaches uses only normal dataset, performing a training pro-
cess in order to characterize a model of normal behaviour. Some of the most common used
distance metrics on clustering methods are Euclidean distance and Mahalanobis distance. In
this kind of methods, IDS tuning process is considerably since the clustering process identifies
intrusion events by itself based on raw audit data.

Table 2.3 shows a summary of some existing anomaly-based IDS including their main features
and related work. The anomaly detection engine that is deployed within the framework, uses
the basics concepts addressed in the work presented by Lee and Stolfo [43], covering packet and
payload analysis. It uses data mining through frequent pattern analysis. In-depth explanation will
be tackled in Chapter 3. Moreover, as an additional reference, Garca-Teodoro et al. [30] presents
a summary of existing IDS that provide both misuse and anomaly detection capabilities, as well
as hybrid features.

Authors Anomaly detection
technique

Usage Fre-
quency

Model acquisition / adaptability Scope of analysis

Porras and
Valdes [66]

Statistical: chi-
square-like

Real-time Automatic: readjust model with
new attack-free patterns

Low and high-level:
packet, flow, payload

Staniford
et.al [79]

Statistical: Naive
bayes networks

Real-time Automatic: readjust model with
new attack-free patterns

Low-level: packet, flow

Lakhina et
al. [41]

Statistical: PCA Real-time Automatic: readjust model with
new attack-free patterns

Low-level: flow

Mahoney
and Chan
[51]

Machine Learning:
rules learning and
Markov models

Batch Automatic: retraining with new
attack-free patterns

Low and high-level:
packet, flow, payload

Lee and
Stolfo [43]

Data mining: rules
learning and frequent
pattern count

Batch Automatic: retraining with new
attack-free patterns

Low and high-level:
packet, flow

Portonoy
[67]

Data mining: unsu-
pervised clustering

Batch Automatic: retraining with
patterns containing a reduced
amount of attacks

Low and high-level:
packet, flow, payload

Table 2.3: Comparative analysis of anomaly-based intrusion detection approaches described in
[14]

Passive Network Audit Framework 19

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

2.4 Intrusion Detection Frameworks useful for PNA

At this point, both IDS general taxonomy as well as detection model classification have been defined
in the context of this thesis. This section describes six different intrusion detection frameworks
in order to provide a background about some existing approaches that implement different data
analysis techniques with features related to PNA. The purpose of presenting these frameworks is
not only to present a panorama of existing framework references, but also to extract some useful
features and reinforce considerations about the scope and capabilities that the proposed PNA
framework is intended to provide.

2.4.1 Common Intrusion Detection Framework (CIDF)

There are different approaches of intrusion detection frameworks. One of the formal references
is the so-called Common Intrusion Detection Framework (CIDF) , “an effort to develop proto-
cols and application programming interfaces so that intrusion detection research projects can share
information and resources and so that intrusion detection components can be reused in other sys-
tems” [15]. As part of the CIDF research, the Intrusion Detection working Group (IDWG) [38]
has defined a framework that includes (1) Requirements documents, which describes high-level
functional requirements for communications between intrusion detection systems and manage-
ment systems; (2) Common Intrusion Specification Language (CISL) which describes the data
formats that satisfy requirements; and (3) Framework Document which identifies protocols best
used for communication between intrusion detection systems. As a result, the Intrusion Detection
eXchange Protocol (IDXP) [37] and Intrusion Detection Message Exchange Format (IDMEF) [16]
have been defined.

Porras et al. [39] describes the main approach of CIDF in which the core definition of Inter-
operating Intrusion Detection and Response (IDR) Components is described as: “Two intrusion
detection and response systems are interoperating when they exchange data automatically, and as
a result achieve some goal which neither could have achieved alone”. Such a definition is very
important to emphasize the core idea of the proposed PNA framework, where different IDS will
be working together exchanging and correlating information. CIDF defines conditions for interop-
erability: (a) Configuration interoperability: condition in which two systems can find each other
and successfully send data back and forth. (b) Syntactic interoperability implies that both systems
can parse the syntax of the exchanged data correctly. (c) Intercomprehension implies that both
systems agree on the data as well as its syntax.

Moreover, a set of scenarios where interoperation between IDR component is involved:(a) An-
alyzing: A gathers raw data and may analyze a small amount of data at a time. Then B takes a
larger or longer view, analyzing reports from A, producing a single report. (b) Complementing:
Components A1 and A2 complement each others’ coverage, while a third component M merges
their input. (c) Reinforcing: components A1 and A2 may reinforce each other’s findings in order to
reduce false positives. Then J judges their output accepting only when both A1 and A2 agree. (d)
Verifying: A1 detects and attack and reports it to a boundary controller J . This controller then
asks its resident detector A2 whether it also see the attack, if so then J considers the report veri-
fied. (e) Adjust monitoring: A adjusts monitoring depending on the kind of warnings it receives.
Then it sends instructions to E about the monitoring target such that A receives information from
E, analyzes it and passes it on. (e) Responding: A sends a prescription about certain attack to
R in the meantime between the human response and the system response. Figure 2.6 shows the
aforementioned scenarios.
Furthermore, CIDF defines a formal language specification focused on the following features: (1)

Expressive: Components should be able to express a wide range of intrusion related prescriptions.
It should be able to express causal relationships among events, the roles of objects in events,
properties of objects, relationships ob objects, response prescription and contingent prescriptions.
(2) Unique in expression: Components should be able to express a given sentiment in one or small

20 Passive Network Audit Framework

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

Figure 2.6: Interoperating IDR scenarios described [15].

number of natural expressions. (3) Precise: Two receivers reading the same message must not
draw mutually contradictory conclusions from it. (4) Layered: There should be a mechanism to
express specific concepts in terms of more general ones. (5) Self-defining: Consumers that receive
a report should be able to interpret messages to the degree they need, without the recourse to
out-of-band negotiation. (6) Efficient: Messages should consume as little of the system resources
as possible. (7) Extensible: It should be able to express additional information, not defined previ-
ously, such that it remains the compatibility with other CIDF components. (8) Simple: Producers
should be able to encode information quickly, whereas consumers should be able to extract the
information in an easy way without extensive processing tasks. (9) Portable: Language should
support a variety of platforms and transport mechanism. (10) Easy to implement: This is a crucial
practical requirement.

The aforementioned features are integrated as part of the CISL [36]. Data exchanged among
CIDF components is described in terms of the so-called generalized intrusion detection objects (gi-
dos) which encode an occurrence of a particular event that occurred at specific time, a conclusion
about a set of events, or an intrusion to carry out in action. Figure 2.8 shows (a) an example of
CISL message and (b) an example with its corresponding encoding based.

According with Garcia-Teodoro et al. [30], IDWG defines the general IDS architecture based
on four type of functional models described in Figure 2.7.

1. E-blocks (Event-boxes): It is comprised of sensor elements that monitor the target system in
order to gather information about events to be analyzed by other blocks. Depending on the
information source considered, it might be either host-based (system calls, processes, etc.)
or network-based (traffic volume, IP addresses, protocol, ports, etc.)

2. D-blocks (Database-boxes): These elements store information from E blocks for subsequent
processing by A and R blocks.

3. A-blocks (Analysis boxes): Processing modules for analyzing events and detecting potential
hostile behaviour. It might trigger alarms if necessary. Depending on the type of analysis,
A boxes can be either misuse-based or anomaly-based.

4. R-blocks (Response-boxes): Executes a response procedures if any intrusion occurs and the
corresponding action is previously defined. Ning et. al. [58] propose an extension to CISL
that allows IDR components to specify requests for particular information from other IDR
components.

The important idea of CIDF that can be taken into consideration in the PNA context is that,
a language can be used to define events, either as intrusion detection parameter or as audit policy
parameter. In practice, such a language can be encoded as well to be managed easily from the
coding point of view (practical implementation). Moreover, since both NSM and SIEM involve
tasks such as storing, indexing, alerting, etc., such a language can define specific tags such as

Passive Network Audit Framework 21

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

Figure 2.7: General CIDF architecture for IDS described [15]

Figure 2.8: Example of CIDF messages and the corresponding encoding

timestamp, index, even type, initiators, etc, in order to provide an easy way to deploy all the
intended features.

2.4.2 Data mining framework

Lee et al. [45], [44] propose a framework to develop intrusion detection models based on data
mining. They state that “a basic premise for intrusion detection is that when audit mechanisms
are enabled to record system events, distinct evidence of legitimate activities and intrusions will
be manifested in the audit data”. Thus, due to the amount of data and the features of the
environment, an intelligent data analysis tools are required. The framework then is focused on
learning classifiers and meta-classification, association rules for link analysis, frequent episodes for
sequence analysis and a support environment to evaluate detection models. Hence, the three main
aspects are:

1. Classification: Maps a data item into one of several predefined categories. The related
algorithms usually create classifiers as a form of decision trees of rules. Given a set of

22 Passive Network Audit Framework

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

records, classification algorithms can compute a model that uses the most discriminating
feature values to describe each concept. The accuracy depends on the amount of features
provides as training dataset.

2. Link analysis: The goal is to determine multifeature (attribute) correlation from a database
table. So, given a set of items, support(X) is defined as the percentage of records that
contain item set X. Association rules is defined by the expression X → Y, [c, s] where both
X,Y are items sets and X ∩ Y = 0, s = support(X ∪ Y) is the support of the rule, and

c = support(X∪Y
support(X) is the confidence.

3. Sequence analysis: Models sequential patterns so that time-based sequences of audit events
that occurs frequently can be identified. Given a set of time stamped event records, where
each record is a set of items, an interval [t1, t2] is the sequence of event records that starts
from timestamp t1 and ends at t2. The width of the interval is defined as t2−t1. support(X)
is the radio between of minimum occurrences that contain X and the total number of event
records. A frequent episode rule is the expression X → Y, [c, s, w] where X,Y, Z are items

sets and they together define an episode s = support(X ∪ Y ∪ Z) and s = support(X∪Y ∪Z
support(X∪Y) is

the confidence. Figure 2.10 shows an example of such a specification: in (a) an example of
association rule and (b) an example of frequent episode. Figure 2.9 shows the data mining
process (described in [42]) applied to build IDS models.

Figure 2.9: Data mining process of building IDS models described in [44].

Figure 2.10: Example of association rule and frequent episode

In a similar way than CIDF, this data mining framework defines a language specification to
associate events and identify frequent episodes. Again, since all NSM, SIEM and PNA define
parameters such as timestamp, service, hostnames, etc. that can be used for data correlation,
then by using such a specification language, event identification can be performed in a suitable

Passive Network Audit Framework 23

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

way. In this approach, parameters related to frequency measurement are expressed as a vec-
tor, however, since the key idea to consider is to add parameters of measurement, the format
can be expressed using tags or any other way that links attributes with their frequency. In the
case of PNA framework, a language specification is intended to be defined in such a way that this
type of tags can be used to identify frequent episodes. Details about it are addressed in Chapter 3.

2.4.3 Event Calculus-based framework

Rouached et al. [71] present a framework based in Event Calculus (EC) that formally analyze the
process of detecting network intrusions. EC is a language for representing and reasoning about dy-
namic systems whose ontology is based on (a) a set of time-points isomorphic to the non-negative
integers, (b) a set of time-varying properties called fluents and (c) a set of event types. There are
some approaches [50], [75], [3] where EC is used to specify security policies and requirements, as
well as to map policies and system behaviour into formal notation.

This approach addresses the challenges for building IDS such as reliability on attacks detec-
tion, ability to analyze large amount of data and the ability to correlate alerts with the actual
security incidents. This framework is based on four main tasks: (1) Design and development
of an underlying scalable and adaptive parallel and distributed IDS architecture for high speed
networks. (2) Design and development of algorithms and techniques to improve the accuracy of
Network Intrusion Detection Systems (NIDS) alerts generation and correlation. (3) Design and
development of an efficient and integrated management platform. (4) Testing and performance
study of the system on large scenarios.

Moreover, this framework has four main research pillars: (1) Modeling the brain to improve
accuracy and prioritize attack alerts. (2) Making the mind to add intelligence to the system by
reasoning on alert logs. (3) Architectural theme to design distributed architectures, traffic load
and balancing algorithms. (4) Management theme to manage the overall defense process in an
efficient way. The functional model is comprised of the following elements:

• Security requirements: Define properties that network environment should fulfill.

• Assumptions: Define additional properties to facilitate verification process (e.g. security
properties with respect to security policies).

• Network specification: Describes an abstract model for security critical entities within the
network.

• IDS rules: Set of intrusion detection misuse-based signatures (Snort based rules).

• Event logs: Set of audit trails from operating systems, application and network components.

• Verification engine: Set of verification to test and fix design errors and verify whether the
process design does have certain desired properties.

Security requirements, assumptions, IDS rules and system specification can be described using
EC predicates and axioms. For instance, Listing 2.2 shows the mapping of a Snort rule into EC-
based specification. This snort rule triggers an alert when a Transmission Control Protocol (TCP)
packet with Acknowledge flag is set containing a value of 0 and the destination is a host within
the network 192.168.1.0/24. With this regard, the PNA framework involves a mapping process as
well, in which a set of high-level rules are used to define how IDS rules, in lower analysis layer, are
interpreted to identify a security event. The full specification of such a high-level rules is presented
in Chapter 3 and in Appendix.

24 Passive Network Audit Framework

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

a l e r t tcp any any −> 192 : 1 6 8 : 1 : 0 /24 any (f l a g s : A; ack : 0 ; msg : ”TCP ping
detec ted ”)

Happens (r e c e i v e (TCP,A,ACK: 0 ; 192 : 1 6 8 : 1 : 0 /24) , t) −> HoldsAt (e (Ale r t ; , msg : T C P
ping d e t e c t e d) , t)

Listing 2.2: Mapping of Snort rule into EC-based specification

Figure 2.11: EC framework functional model proposed in [71]

As it can be appreciated in Figure 2.11, the functional model of EC presents shared features
with the PNA context. First, data aggregation is present in such a way that a central point of
analysis engine is used to generate the context of security events (attacks). It is done based on
data aggregation of five sources: security requirements, assumptions, network specification, IDS
rules and event logs. Second, there exists a pre-processing task for event logs, which supposes data
interpretation and correlation tasks. Finally, control parameters such as security requirements and
assumptions are used in order to define the scope of the checking engine. Hence, this approach
reinforces the use of the following concepts: control parameters, data aggregation, pre-processing
task.

2.4.4 Passive testing framework based on security rules specification

Mallouli et al. [52] propose a passive testing approach that provides the ability to check whether
a system respects its security policy. This framework is focused on system events analysis, nev-
ertheless, a mapping into network events is possible by generalizing the concept of event. This
framework relies on a Nomad Formal Language [19], which is based on deontic and temporal logics,
such that by collecting execution traces it is possible to deduce automatically a verdict about the
compliance of security policies within the system. To achieve this goal, three main steps can be
described below, and the functional architecture is depicted in Figure 2.12.

1. Definition of passive architecture: execution traces collection.

2. Description of the system security policy using a formal specification language: description
of security rules in Nomad language.

3. Security analysis: A passive tester deduce a global verdict with three possible options: PASS,
FAIL or INCONCLUSIVE.

The formal language presented in this framework provides the ability to express privileges on
non-atomic actions. Here, a set of basic definition are described as follow:

Passive Network Audit Framework 25

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

1. Atomic action: the emission or the reception of a message between two system entities
(or components) using the following syntax Entity1?or!Msg(Par1, Par2, ..., Parn)Entity2

where Entity1 and Entity2 represent the source or the destination of the message. ′?′ and
′!′ define a reception and emission of a message by Entity1. Msg(Par1, Par2, ..., Parn) rep-
resents the message exchanged between Entity1 and Entity2 with its parameters. Entity1,
Entity2, Msg and Pari can be replaced by the symbol ∗ to represent any entity, any message
or any parameter.

2. Non-atomic action: If α and β are actions, then (α;β), which means “α is followed immedi-
ately by β” and (α; ∗;β), which means “α is followed by β” are non-atomic actions.

3. Formula: If α is an action then start(α) (action α is being started) and done(α) (action α
is done) are formula.

4. Deontic modalities: If A is a formula, then a modality O (‘A’ is mandatory, F (‘A’ is
forbidden) and P (‘A’ is permitted) are formula.

Interpretation Rule definition

Permission granted to usr1 to write
on file1.doc which is managed by
ServerA, if earlier, the user usr1
was authenticated and not discon-
nected

P(start(usr1!Msg(ReqWrite, fich1.doc)ServerA)| 	
(done(usr1!Msg(AuthReq)ServerA)) ∧
done(usr1?Msg(AuthOK)ServerA) ∧
¬done(usr1?Msg(DisconnectReq)ServerA))

ServerA can not accept more than
two authentication request from the
same user in the same second

F(start(ServerA?Msg(https,AuthReq)user)|
O≤−1sdone(ServerA?Msg(https,AuthReq))user)
; ∗;ServerA?Msg(https,AuthReq)user)

Table 2.4: Example of rule specifications for policy checking

Figure 2.12: Security rule specification architecture of framework presented in [52]

In order to perform the security checking process, an algorithm is presented as well in [52] to
deal with obligation rules and retrieve the verdict.

Table 2.4 shows an example of security policies mapped into specification rules. As it can be
appreciated on it, the type of security policies that can be mapped into a formal definition rules is
based on the use of attributes (e.g. DisconnectedReq, AuthReq), elements (e.g. file1.doc, ServerA)
and actions (e.g. start, done). In the context of PNA framework this can be mapped into assets
with their corresponding attributes. It is important to emphasize the fact that the use of logic
as part of security policy specification, provide a way to link events in order to create contexts.
With regard to the functional model, in this framework there is no multiple data aggregation,
however there are other shared components with NSM, SIEM and PNA contexts, such as control
parameter (security policies), single input (trace file) that mapped into PNA it would be the raw
network traffic. In addition, the actual result are not IDS alerts, but a verdict about a security
policy which is mapped into a verdict of network event audit. Thus, the key concepts from this

26 Passive Network Audit Framework

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

approach that can be taking into consideration within the PNA framework is the implementation
of a mapping process that may use logic for event correlation.

2.4.5 Alert post-processing framework

Spathoulas et al. [76] propose a framework focused on alert pre-processing. In this approach,
the input of the system is the set of alerts generated by multiple IDS, thus, by using different
algorithms, the system generates a higher level interpretation about the security events that have
occurred on the network. This framework defines the following data formats in order to handle
inputs and outputs for each component: Alert (A), Aggregated Alert (AA), Aggregated Alerts’
Cluster (AAC), Alert Set (AS), Aggregated Alert Set (AAS), Aggregated Alert Cluster Set (AACS).
In addition, the following fields from IDS alerts are used: Attack ID (AID), Attack Class (ACL),
Timestamp (T), Source IP (SIP), Destination IP (DIP). Moreover, three algorithms are defined in
order to aggregate components, merge AAS, and clustering. Figure 2.13 depicts the operational
architecture of this framework which is based on three phases.

Figure 2.13: Alert post-processing framework architecture proposed in [76].

1. Preparation phase: the system is fed by the set of alerts generated by the IDS. The input
is passed to the Aggregation Component in order to convert groups of alerts, belonging to
a single security events, into an aggregated alert that contains information about relevant
events. Then, an additional component, the so-called Merging Component (MC), filters
aggregated alerts that already have been referred. Figure 2.14 shows the functional model
of this phase.

Figure 2.14: Alert post-processing framework proposed in [76]. Preparation phase.

2. Clustering phase: this phase has two operation modes, simple and advanced. On the one
hand, Simple mode outputs the MC data to a single Cluster Component (CC) in order to

Passive Network Audit Framework 27

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

create inter-related clusters of aggregated alerts, based on similarity clustering proposed by
Valdes et al. [84]. On the other hand, Advanced mode proposes an hypothesis about missed
security events, before the clustering process. The intermediate clustering is performed by
CC and it passes the generated small cluster to the Cluster Generator (CG), in order to
create artificial clusters. These clusters are used to produce high clustering as the final set
of clusters. Figure 2.15 shows the functional model of this phase.

Figure 2.15: Alert post-processing framework proposed in [76]. Clustering Phase: Simple and
advanced modes.

3. Visualization Phase: This component creates a graphical representation of the produced
clusters, in order to create a high-level interpretation. Figure 2.16 shows the functional
model of this phase.

Figure 2.16: Alert post-processing framework proposed in [76]. Visualization phase.

The similarity value is calculated by combining the four similarity components with respect to
T,AID, SIP and SIP such that:

sim(a, c) = waid ∗ simaid + wt ∗ simt + wsip ∗ simsip + wdip ∗ simdip

The weights are values between 0 and 1 so that

waid + wt + wsip + wdip = 1

28 Passive Network Audit Framework

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

The AID similarity is calculated with regards to the attack class so that:

simaid(AA1, AA2) =

{
1 if AID1 ≡ AID2

0 otherwise

From a general perspective, this framework describes a functional model very similar to the
intended PNA framework. First, the model includes an input that passes through preparation,
analysis and visualization phases. In this sense, very similar phases are intended to be defined
within the proposed PNA framework as well, just using with different components and internal
workflow. Second, data aggregation is performed with IDS data from multiple sensors and it is
merged into a single point of analysis. Here, this approach describes an additional task done by
the Merging component producing classified data. In fact, the key idea to take into account from
this framework is that data aggregation includes not only a merging process, but also classification
processes based on specific network attributes, used to correlate data and to create contexts of
single events.

2.4.6 Passive Network Appliance

Schultz et al. [72] describe the so-called Passive Network Appliance (PNA, but referred as PNApp
in this thesis to distinguish it from Passive Network Audit). It is intended to monitor network
activities and its main goal is real-time monitoring, thus NSM features are mostly involved, fo-
cusing on measurement purposes. In general terms, the idea of this framework is to provide a
cost-effective way of network monitoring based on real-time packet logging used to generate snap-
shots of network behaviour through the time. It has a strong focus on performance. Figure 2.17
describes the operational architecture of this implementation, in which there are two main environ-
ments: (1) kernel space: performs low-level tasks such as packet decoding and network elements
tracking. (2) user space: performs high-level tasks such as monitoring based on previous packet
decoding and alerting process. Since it is a real-time passive approach, the actual output is the
same input, thus only decoded attributes are used to analyze and produce meaningful information.

Despite the fact that this framework is mainly focused for high-performance real-time mon-
itoring, and the intended PNA framework is focus on audit of security-related events, there are
three key ideas that can be taken into consideration in the context of PNA.

• First, this implementation uses two stateful real-time monitors: IP-to-IP tracker and IP-
statistics-tracker. This can be used to track single IP activities in order to create meaningful
contexts for network audit purposes.

• Second, the idea of snapshot of network behaviour is in fact the way real-time audit can
be performed within the PNA framework. In practice, this can be done by retrieving, in
real-time, samples of network traffic of certain period (input dataset) and then to enqueue
them on the audit engine. Details of this process are described in Chapter 3.

• An API for real-time monitoring, that in PNA context such an API is mapped into network
audit capabilities, providing a scalable implementation.

Passive Network Audit Framework 29

CHAPTER 2. NETWORK AUDIT AND INTRUSION DETECTION TAXONOMY

Figure 2.17: Passive Network Appliance functional model.

2.5 Summary of gathered knowledge and features

Taking into account characteristics of existing frameworks presented in this section, as well as the
capabilities that current NSM and SIEM technologies provide, a list of useful and suitable features
that will be part of PNA framework are described in Table 2.5. This information addresses the
first two support questions that try to set the context to answer the research question of this thesis
(Section 1.4).

Framework Focus Suitable features for PNA Other considera-
tions

Common Intru-
sion Detection
Framework [15]

Specification lan-
guage for intrusion
detection

Language format and encoding for
event description, timing tags for event
correlation and timeliness, tagging
granularity for data classification

Syntax of language
and encoding

Data mining
framework [45],
[44]

Specification
language and
frequency analysis

Language for event description, timing
tags for event correlation and timeli-
ness, frequency tags for identification
of frequent episodes

Syntax of lan-
guage, type of
frequency analysis

Event Calculus
Framework [71]

Specification lan-
guage

Specification language for event de-
scription, multiple data aggregation,
control parameters: configuration and
security requirements for compliance
verification

Syntax of lan-
guage, attributes
of configuration
parameters

Passive testing
framework based
on security rules
specification [52]

Security compli-
ance verification

Specification language for event identi-
fication and policy checking, Logic for
event correlation, Control parameters:
configuration and security policies, sin-
gle result: verdict

Syntax of lan-
guage, verdict
validation

Alert Post-
processing Frame-
work

IDS rules pre-
processing

Modular architecture, IDS data corre-
lation method

Analysis of classifi-
cation methods

Passive Network
Appliance

Real-time monitor-
ing and packet log-
ging

General architecture, Tracking mod-
ules, Application Programming Inter-
face (API)

Modularization

Table 2.5: Summary of useful features from some existing detection/monitoring frameworks

30 Passive Network Audit Framework

Chapter 3

Framework Specification

3.1 Overview

Previous sections have addressed basic concepts about Intrusion Detection technologies, as well
as some existing approaches related to PNA (summarized in Table 2.5). The methodology used
to define the framework specification including four main aspects:

• Findings of background study that were taken into consideration to define features and char-
acteristics of the architecture.

• Definition of framework’s capabilities based on PNA context discussed in Chapter 1. This
was necessary to determine specific purposes of framework’s components.

• Characterization of detection features and suitable design taking into account literature
review presented in Chapter 2, as well as intended features part of the research question (i.e.
to provide streamlined, flexible and effective framework).

• Analysis of capabilities of a variety of traffic analysis tools in order to identify useful features
on PNA context and their integration with framework’s components.

Thus, this section will describe the framework specification including architecture, functional
model and in-depth description of its components.

3.1.1 Purpose

The present work aims to develop the so-called Passive Network Audit Framework (PNAF), which
is a framework that uses PNA techniques for network traffic analysis. The main goal of PNAF is
to provide the capability to get a security assessment of network traffic and provide a high-level
interpretation of security events in an automated way. It is done by combining different analysis
techniques, algorithms and technologies, all specifically based on PNA approaches. Furthermore,
the practical implementation or the framework, designed as Fox-IT technology, aims to define an
API that provides the aforementioned capabilities in a flexible and structured way.

3.1.2 Scope

In order to generate useful information within a network security context, PNAF is intended to
provide the capability of getting the following information:

a. Summary of the Security Level of the network

b. Findings of anomalous activities

c. Findings of security audit policy

Passive Network Audit Framework 31

CHAPTER 3. FRAMEWORK SPECIFICATION

d. Findings of impact analysis

e. Summary of security recommendations

f. Reference of evidence

3.2 Main architecture

PNAF is a modular framework in which every component is intended to perform a specific task
as part of a serial process. This means that the input of a certain component is the output of
past processes. The basic idea of the architecture is based on the general concept of Audit, in
which an Auditor performs a set of tests, checks and verification processes over a System which is
comprised by a set of Assets. In that sense, the aforementioned entities exist as well on PNAF,
such that the framework is the working environment that provides audit capabilities. Figure 3.1
shows the main architecture of PNAF, which receives input data from the Auditor who defines
the audit parameters (configuration and baselines), hence the framework can perform a set of
specific processes in order to generate a meaningful output report, following the purpose and
scope presented in Sections 3.1.1 and 3.1.2.

Figure 3.1: PNAF architecture

3.3 Modules

PNAF is comprised by three main modules: Data Capture Module (DCM), Data Processing
Module (DPM) and Data Visualization Module (DVM). These modules all together define the
so-called PNAF instance, which is the core entity within the input-function-output scheme de-
picted in Figure 3.1. Each module includes engines for specific purposes. Figure 3.2 shows a
single representation of the components within the framework (i.e. not going into the level of for-
mal representation such as class diagrams, but just giving an overview of the framework general
structure).

3.3.1 Data Capture Module (DCM)

The main purpose of this module is to handle the input of the framework, which can be either
network traffic from the network interface (online mode), or network traffic from a pcap capture
file (offline mode). It includes pre-processing tasks over network traffic performed by the toolset
selected within the framework. This module is comprised by two engines and the corresponding
sequence diagram is depicted in Figure 3.3

Network Traffic Capture Engine (NTCE)

This engine manages the whole capturing process within the framework when it is used in online
mode. Its purpose is to schedule the capturing process, to control capturing tools and to handle
captured raw traffic.

32 Passive Network Audit Framework

CHAPTER 3. FRAMEWORK SPECIFICATION

Figure 3.2: Passive Network Audit Framework components

Network Traffic Processing Engine (NTPE)

This engine handles all external tools used within the framework (e.g. IDS, flow analyzers, de-
coders, etc.) that are executed to generate the input data for the DPM. Its purpose is not only
to execute the tools in an automated way, but also to apply the framework audit parameters,
integrity checking of the actual output and execution errors handling. The output of this engine
is the actual log dataset generated by the tools, each of them with specific format readable by the
framework (e.g. Comma-Separated Value (CSV), JavaScript Object Notation (JSON), etc).

Figure 3.3: Sequence diagram of Data Capture Module.

Passive Network Audit Framework 33

CHAPTER 3. FRAMEWORK SPECIFICATION

3.3.2 Data Processing Module (DPM)

This module performs all processing tasks to translate the raw pre-processed data from the toolset,
into a classified, sorted and specifically processed information that can be sent to the DVM in
order to be presented as a report. This module includes engines for pre-processing with dynamic
aggregation, which provides the flexibility to include additional engines for pre-processing tasks.
The current design includes four engines for pre-processing, whereas two fixed modules are defined
for post-processing tasks (see Figure 3.2). The corresponding sequence diagram is depicted in
Figure 3.4.

Network Profiling and Enumeration Engine (NPEE)

The purpose of this engine is to retrieve a profile of the system by performing an enumeration
process of all assets within the environment that it is being audited. The enumeration process
includes not only identification of asset themselves, but also identification of their profiles (e.g.
type of system, role, software that is being used, active services, etc). Such an information
is used afterwards to identify policy violations as well as vulnerabilities and threats within the
environment. Tools that can be used to generate the NPEE data set are: P0f[89], Prads[28],
Httpry[12], tcpdstat[87], Snort (OpenAppID engine)[70] and Suricata (HTTP parser) [61].

Intrusion Detection System Engine (IDSE)

This engine is intended to execute all intrusion detection engines used within the framework. Its
purpose is not only to execute and get the list of alerts triggered by IDS, but also to perform
a tracking and decoding process to gather and analyze payloads for further evidence reference
and data correlation. Moreover, a classification and prioritization process is done in order to
group and identify threats according the severity and possible impact they may represent. Such a
prioritization is a dynamic parameter that can be defined as part of a framework’s profile. Tools
that can be used to generate IDSE data are Snort[70], Suricata [61] and Bro[80].

Deep Packet Inspection Engine (DPIE)

This engine is intended to perform an in-depth analysis over the network traffic, including payload
decoding in application layer. Thus, data extracted from protocol communications can be analyzed
in order to find potential patterns or anomalies that could represent a threat, policy violation or
even compromise evidence. Deep Packet Inspection (DPI) includes not only such a decoding
process, but also additional gathering tasks such as file extraction from network traffic, tokens
analysis from decoded strings and protocols, etc. PNAF is focused on DPI over Hypertext Transfer
Protocol (HTTP), Domain Name System (DNS) and Transport Layer Security (TLS) protocols.
Tools that can be used to generate DPIE dataset are: Suricata (HTTP and DNS parsers), Httpry,
argus[68], Bro[80], Chaosreader[32], Nftracker[27], Tcpxtract[35], TcpExtract[18] and Tcpflow[24].

Network Flow Analysis Engine (NFAE)

The purpose of this engine is to perform a statistical analysis of network flows in such a way that
an overview of network utilization is presented, as well as general statistics for protocols and hosts
within the working environment that is being audited. Moreover, Network Flow Analysis (NFA)
provides the capability to identify possible anomalies and attacks based either on frequency analysis
or simple counters analysis. Tools that can be used to generate NFAE dataset are: Argus[68],
Cxtracker[26], Tcpdstat[87] and Silk[57].

Intermediate Data Correlation Engine (IDCE)

The purpose of this engine is to merge all intermediate data and perform a correlation process of
data produced by NPEE, IDSE, DPIE and NFAE engines.

34 Passive Network Audit Framework

CHAPTER 3. FRAMEWORK SPECIFICATION

Network Security Audit Engine (NSAE)

This component is the leap engine within DPM in which all the pre-processed information from
other engines are sent before the next stage is reached. The goal of this engine is to perform
auditing. In fact, the core security audit process of PNAF is done on this stage since the input for
this engine is comprised by all necessary pre-processed information where all profiles, roles, policy
violations and anomalies are identified from. The behavior of this engine is managed by a set of
four audit components:

1. PNAF Rules: Specification to describe audit events

2. PNAF Dictionary: Specification to describe security events using baselines based on well-
known security issues (vulnerable software).

3. PNAF Blacklist: Specification of forbidden terms that should not be found on audit trails.

4. Anomaly detection: A simple anomaly detection algorithm that can be used to identify
potential threats or unusual activities, based on sequences analysis. If a training dataset is
provided, sequence of events can be checked in such a way that anomalies can be identified
in a more accurate way, otherwise the training dataset is generated over the time when the
framework is used in online mode.

Figure 3.4: Sequence diagram of Data Processing Module.

Passive Network Audit Framework 35

CHAPTER 3. FRAMEWORK SPECIFICATION

3.3.3 Data Visualization Module (DVM)

This module is intended to take processed information from the DCM in order to present a
meaningful report to the auditor. This module presents the key findings of the audit process
such that summary of threats, policy violations, and impacts are reported, emphasizing the most
important aspects to take into consideration. This module is comprised by two engines and the
corresponding sequence diagram is depicted in Figure 3.5

Graphic Security Visualization Engine (GSVE)

This engine uses simple visualization tools to transform the audit result into some graphical
visualization. The first version of the framework includes only web data visualization using JSON
format. Further versions may include tools for tracking visualization.

Security Audit Report Engine (SARE)

This engine maps the actual findings of the whole audit process into a human-readable report,
emphasizing the key aspects. This is the middle layer between the actual data generated by PNAF
and any other external visualization tool used to generate the final report. An important feature of
such an engine is that, based on the audit results, it can provide not only some recommendations
for the analysts, but also it can generate new rules for IDS (Snort/Suricata format) in order to
extend and improve detection capabilities for similar problems in the future.

Figure 3.5: Sequence diagram of Data Visualization Module.

3.4 Selection of technologies

Taking into account the purpose and scope of the framework, a set of analysis tools and technologies
have been analyzed in order to select the most suitable ones to be implemented as part of the

36 Passive Network Audit Framework

CHAPTER 3. FRAMEWORK SPECIFICATION

framework. The three main aspects taken into account were:

1. Data collection: The purpose was to find the best way to capture network traffic and select
the most suitable tool, also taking into account the fact that PNAF is intended to be deployed
within a Small and Medium Enterprises (SME) environment (although not exclusively).

2. Data processing: The purpose was to find a suitable way of data processing. This process
includes not only the way data is handled, but also what kind of data is relevant on each
stage such that only necessary information is used in order to improve the efficiency of the
framework.

3. Data analysis: The purpose was to define the kind of information that can be retrieved,
analyzed and eventually interpreted, taking into consideration audit parameters that can be
defined (e.g. DPI over HTTP data allows to identify user-agent for vulnerability discovery
based on software version).

Table 3.1 shows an overview of the tools that have been analyzed, presenting PNAF modules
and engines they are used on, their purpose, specific data retrieved and advantages considered
for selection. It is important to emphasize the fact that some tools provide the same type of
information, however an important feature of the framework is that data correlation process not
only links data into a single security events, but also compares and validates similar information
retrieved from different tools in order to create more reliable results.

Tool Module Engine Purpose Data Retrieved Advantages

Suricata
logger

DCM NTCE Real time traffic
capturing

Raw traffic Efficiency in traf-
fic capturing using
af packet or pfring
(High-performance
network traffic captur-
ing technology)

P0f DPM NPEE Network and ser-
vice enumeration

Link types, Platform
description, Operating
System (OS) descrip-
tion and version, sys-
tem role

Detection by multiple
methods: signatures,
behaviour

Snort Open
AppId

DPM NPEE Application identi-
fication

Application identified
within the network
traffic

Application identifica-
tion by protocol anal-
ysis and not by port
number checking

Tcpdstat DPM NPEE Protocol enumera-
tion and statistics

Protocol counters Classification of net-
work traffic by protocol
layers

Prads DPM NPEE Network service
and enumeration

Link type, Vlan detec-
tion, Role, protocols,
Platforms, OS descrip-
tion and version

Detection by multiple
methods.

Suricata
IDS

DPM IDSE Misuse-based IDS
engine

IDS alerts Flexible detection by
signatures, Applica-
tion layer parsers,
traffic normalization,
efficiency, payload
gathering

Passive Network Audit Framework 37

CHAPTER 3. FRAMEWORK SPECIFICATION

Snort IDS DPM IDSE Misuse-based IDS
engine

IDS alerts Flexible detection by
signatures, preproces-
sors, traffic normaliza-
tion, efficiency, pay-
load gathering

Bro IDS DPM IDSE Misuse-based IDS
engine and policy
checker

IDS and policy alerts Flexible detection by
signatures and poli-
cies, application layer
parsers

Argus DPM NFAE Network Flow
analysis

Network Flow statis-
tics

Efficient method to an-
alyze large amount of
network traffic

Cxtracker DPM NFAE Network Flow
analysis

Network Flow statis-
tics

Efficient method to an-
alyze large amount of
network traffic

Silk DPM NFAE Network Flow
analysis

Network Flow statis-
tics

Efficient method to an-
alyze large amount of
network traffic

Bro HTTP
parser

DPM DPI HTTP protocol
data decoding

HTTP headers, User
agents, URL, Domains,
Host role, HTTP sta-
tus code, Mime-types,
proxy information, file
names, referrer, tags,
usernames, payloads

More detailed informa-
tion of HTTP data

Bro TLS
parser

DPM DPI TLS protocol data
decoding

SSL/TLS fields: issuer,
validity, subject, ver-
sion, cipher, client sub-
ject, server name

More detailed informa-
tion of SSL/TLS data

Bro SSH
parser

DPM DPI SSH protocol data
decoding

SSH client and server
version, direction, sta-
tus

Detailed information of
SSH data

Bro DNS
parser

DPM DPI DNS protocol data
decoding

DNS fields: query,
qclass, rcode, TTL,
AA, RA, rcode, qtype

Detailed information of
DNS data

Bro SSH
parser

DPM DPI SSH protocol data
decoding

SSH client and server
version, direction, sta-
tus

More detailed informa-
tion of SSH data

Suricata
File de-
coder

DPM DPI File extraction Filename, file type,
source, hash (md5,
sha1, sha256), bytes

File extraction for mal-
ware identification and
other policy violations

Httpry DPM DPI Http protocol data
decoding

HTTP headers, URL,
Domains, Host role,
HTTP status code,
payloads

In-depth analysis of
HTTP data not only
related with IDS alerts

Suricata
TLS parser

DPM DPI TLS certificate
analysis

IssuerDn, TLS version,
Subject, Fingerprint

Pre-processing of TLS
certificates info for fur-
ther analysis

Ssldump DPM DPI TLS data analysis TLS Protocol workflow TLS behaviour analy-
sis

Suricata
DNS parser

DPM DPI DNS data analysis Rrtype, TTL, Type,
Rname

Passive DNS analysis,
Domain blacklisting

38 Passive Network Audit Framework

CHAPTER 3. FRAMEWORK SPECIFICATION

Passive
DNS

DPM DPI Passive DNS anal-
ysis

DNS full data and stats Data gathering for fur-
ther analysis

Suricata
File parser

DPM DPI File extraction
from network
traffic

Single files transferred
within complete TCP
sessions

Malware detection

Tcpxtract DPM DPI File extraction
from network
traffic

Single files transferred
within complete TCP
sessions

Malware detection

TcpExtract
(python)

DPM DPI File extraction
from network
traffic

Single files transferred
within complete TCP
sessions

Malware detection

Chaosreader DPM DPI Application layer
data decoding

HTTP, DNS, FTP,
SMTP conversations

Payload analysis

Tcpflow DPM DPI TCP sessions
reassembly and
HTTP decoding

Single sessions and
basic HTTP data:
method, protocol

Evidence gathering
and session tracking

Table 3.1: Toolset used within the framework.

In order to retrieve information about security events, PNAF performs data correlation using
both IDS schemes: misuse-based through PNAF rules and anomaly-based through a data mining
algorithm. As it was explained in Section 3.3.2, the core audit engine of PNAF is controlled by
four detection components. On the one hand, PNAF rules, auditor dictionaries and blacklists
involve misuse-based. On the other hand, the fourth detection component involves anomaly-based
techniques based on data mining using short sequences analysis.

It is very important to emphasize the fact that PNAF relies mainly on the use of misuse-based
techniques since Compliance is the key process in which audit activities are based. This process is
of course supported by additional processes such as evidence retrieval and impact analysis. Thus,
since as part of the audit process it is necessary to identify any fact that does not correspond to
predefined baselines, then misuse-detection is perfectly suitable to be used. Nevertheless, as it is
proposed in this work, anomaly-based techniques can be applied for audit purposes as well.

3.5 Misuse-based features

In order to perform the audit process, a simple algorithm is defined in such a way that all pre-
processed information retrieved from data aggregation is used to create meaningful context. This
algorithm involves three misuse-based approaches: rules, dictionary and blacklist, meaning that
different layers of correlation are used within the framework. These so-called Audit components
are defined as follows:

3.5.1 Audit Rules

This is the general specification to identify anomalous events on network activities from audit
perspective. The purpose of this specification is to define a default language that PNAF is able to
understand and apply detection parameters, just like signatures are applied on misuse-based IDS.
Hence, PNAF rules are defined by five main properties showed in Listing 3.1:

Passive Network Audit Framework 39

CHAPTER 3. FRAMEWORK SPECIFICATION

ID −> Score −> Asset −> Attr ibute −> Flag

Listing 3.1: PNAF rules specification

• ID: Unique Id of the rule. It is used for internal identification purposes.

• Score: Defines the rule relevance for audit purposes. It is used afterwards to sort the security
events according to their impact.

• Asset: Description of an entity part of the working environment. Examples of possible
values can be single IP address, network subnet, single device explicitly identified, hostname
or event. Appendix XX shows the full list of values defined within the framework.

• Attribute: Defines a specific attribute of the Asset defined on the rule.

• Flag: Defines whether specific value for the attribute is considered either as valid as part of
permissive policy, or as violation as part of restrictive policy.

Listing 3.2 shows some examples of PNAF rules. Rule with ID = 1 audits that OS version on
hosts within subnet 192.168.1.0/24 use a Windows based system with minimum version 7. Rule
with ID = 2 audits that WebBrowser version used by hosts within subnet 192.168.2.0/24 use any
software except Internet Explorer. Rule with ID = 3 checks whether host 192.168.3.10 has output
flows before 18:00hrs. Finally, rule with ID = 4 audits that host 192.168.10.10 runs SSH service
only on TCP port 22 and the software has to be OpenSSH. The Asset description can be defined
in Classless Inter-Domain Routing (CIDR) format.

1 −> 1 −> 192 . 168 . 1 . 0/24 −> OS −> Platform=Windows , MinimumVersion=7
2 −> 1 −> 192 . 168 . 2 . 0/24 −> WebBrowser −> ForbiddenBrowser=IExp lore r
3 −> 5 −> 1 9 2 . 1 6 8 . 3 . 1 0 −> Flow −> MaxOutTime=1800
4 −> 2 −> 1 9 2 . 1 6 8 . 1 0 . 1 0 −> S e r v i c e −> SshVal idPort =22, SshServer=OpenSsh

Listing 3.2: Example of PNAF rules

3.5.2 Audit Dictionary

It includes a list of predefined and well-known issues related to vulnerable versions of software
used by assets. Hence, some vulnerabilities can be identified by comparing the OS, Services,
WebBrowsers, etc. against such predefined dictionary. This dataset can be updated periodically
such that the most recent well known vulnerable versions used within the environment can be
identified. Listing 3.3 shows the dictionary specification which is comprised of five fields:

ID −> Score −> Software −> Vers ion −> Reference

Listing 3.3: PNAF dictionary specification

• ID: Unique Id of the rule. It is used for internal identification purposes.

• Score: Describe definition relevance for audit purposes. It is used afterwards to sort the
security events according to their impact.

• Software name: Name of software that is being described ad vulnerable.

• Software version: Software version described as vulnerable.

• Reference: Reference to related vulnerabilities advisories.

40 Passive Network Audit Framework

CHAPTER 3. FRAMEWORK SPECIFICATION

Listing 3.4 show examples of Dictionary terms. Entry with ID = 1 looks for assets that use web
browser Iexplorer with versions 9,10 and 11 since they are related to vulnerability with CVE-2013-
3893. Entry with ID = 2 looks for assets that use Apache 2.2 web server related to vulnerability
CVE-2014-0098. Entry with ID = 3 looks for SSH Server 5.5 related to CVE-2012-5975.

1 −> 1 −> I e x p l o r e r −> 9 ,10 ,11 −> CVE−2013−3893
2 −> 5 −> Apache −> 2 . 0 . 9 −> CVE−2014−0098
3 −> 3 −> SSHTectiaServer −> 6 .04 −> CVE−2012−5975

Listing 3.4: Example of PNAF dictionary

3.5.3 Audit Blacklist

It is a template that defines a list of forbidden hosts, servers, services, versions, domains, etc.
Listing 3.5 shows PNAF Blacklist specification which includes three fields:

ID −> Score −> Term(s)

Listing 3.5: PNAF blacklist specification

• ID: Unique Id of the rule. It is used for internal identification purposes.

• Score: Describe definition relevance for audit purposes. It is used afterwards to sort the
security events according to their impact.

• Term: Definition of forbidden term to look during audit process.

Listing 3.6 show examples of Blacklist. Entries can be described either with a single term or
multiple terms.

1 −> 1 −> productX
2 −> 5 −> music , download
3 −> 3 −> snmp , community

Listing 3.6: Example of PNAF blacklist

Algorithm 1 shows the way misuse-based techniques are used in PNAF. The three baselines
used as reference for security event identification should be defined and loaded. Then, the immedi-
ate process is to describe all assets involved within network traffic. Thus, based on the information
of every asset (e.g. role, description, OS, UserAgent, protocol codes, etc.) a matching comparison
can be done against the three references by calling the corresponding procedures checkBlacklist,
checkDictionary and checkRules. In order to define relevance of security events, a simple scoring
method is used in such a way that every single asset accumulates three scores, one per detection
component. Afterwards, a summary of these scores is taken into account in order to sort security
events based on relevance.

As it is presented in Algorithm 1, Asset description (DescribeAssets procedure) involves Asset
enumeration, Asset profiling and Asset list. These tasks involve DPI to analyze the input dataset
and retrieve specific data such as software products that are being used within the network, includ-
ing operating systems, web browsers, service software, web servers, etc. Since the input dataset
may not be necessarily in standard formats such as Common Log Format (RFC 1413) or User
Agent format (RFC 2616), which can be parsed easily, then an additional tokenization task is
included within the framework in order to retrieve the needed information in such cases.

Passive Network Audit Framework 41

CHAPTER 3. FRAMEWORK SPECIFICATION

Algorithm 1 PNAF Misuse-based

1: MisuseAudit();
2: Sort Assets by score
3: End
4: procedure MisuseAudit
5: Load PNAF Blacklist
6: Load PNAF Dictionary
7: Load PNAF Rules
8: describeAssets()
9: auditAssets()

10: for every Asset do
11: if asset score > threshold then
12: trigger Alert on asset

13: return
14: procedure AuditAssets(Assets)
15: for every Asset do
16: checkBlacklist(Asset)
17: checkDictionary(Asset)
18: checkRules(Asset)

return
19: procedure describeAssets
20: perform Assets Enumeration
21: perform Assets Profiling
22: create Assets List
23: procedure checkBlacklist(Asset)
24: for every Asset Attribute do
25: if attribute matches BlacklistItem then
26: AssetBLscore = AssetBLscore + BlacklistItemScore

return
27: procedure checkDictionary(Asset)
28: for every Asset Attribute do
29: if attribute matches DictionaryItem then
30: assetDCscore = assetDCscore + DictionaryItemScore

return
31: procedure checkRules(Asset)
32: for every Asset Attribute do
33: if attribute matches rule then
34: AssetPR : score = AssetBLscore + RuleScore

return

A tokenizer is used to extract all terms (i.e. tokens) within strings with unknown formats.
Therefore, in the context of PNAF, a token is an alpha-numeric string that is extracted from a
string and that provides special meaning (e.g. software product name or version). It not only filters
the tokens, but also takes potential meaningful strings that can be used to create a duple str1-str2
where str is a string that might describe either a product name (e.g. web server name such as
“Apache” or “IIS”) or a product version (e.g. mixed version specification including major version,
minor version, etc. such as “2.2.1”, “1.5”, etc). Thus, arbitrary strings are not taken into account
to produce the final token that will be passed as Asset attribute. Algorithm 2 shows how the
tokenizer works in PNAF. Important aspects are the way actual meaningful tokens are extracted
using special delimiters (i.e. ,:/&)(=- ? +;!%$#][), as well as all possible combinations of both
alpha and alpha-numeric strings. Thus, the actual output of the tokenization process is a list of
tokens that represent values that will be compared against PNAF misused-based dictionaries.

Algorithm 2 PNAF Tokenization process

1: for every string containing asset attributes do
2: getAuditTokens(string)

3: End
4: procedure getAuditTokens(String)
5: Load delimiters
6: tokenize(String, delimiters)
7: if tokenizer outputs alpha, numeric and alphanumeric tokens then
8: for every alpha token do
9: for every alphanumeric token do

10: create a duple (alphaToken-alphanumericToken)

11: for every numeric token do
12: create a duple (alphaToken-numericToken)

return list of duples

42 Passive Network Audit Framework

CHAPTER 3. FRAMEWORK SPECIFICATION

3.6 Anomaly-based features

The reason to use an anomaly-based algorithm is that an audit trail can describe the normal be-
haviour and characteristics of single assets over the time, thus, by analyzing sequences it might
be possible to identify changes on this behaviour that otherwise would not be detected unless new
definitions on rules, dictionary and blacklist were added. For instance, the fact that an asset has
a lot of connections to usual hosts and after some time this behaviour changes, (due to malware
infection for example), then connections targets may not be as usual even though they are not
marked on the blacklists neither as policy violations. Nevertheless, it might be an indication of
potential anomalous change. Another example would be the case of an asset that has been identi-
fied to be a web server running specific software, then it changes its software version which is not
necessarily listed as vulnerable in dictionaries.

It is possible to use different anomaly-based approaches such as statistical-based, knowledge-
based, machine learning, etc, taking audit trails as input data. Thus, in order to show the feasibility
of using this kind of approaches, this section describes a method that involves data mining and
that takes features from statistical-based and knowledge-based models. It is intended to provide
anomaly detection within PNA context.

Guojun Mao et al. [54] propose an intrusion detection model through the analysis of short
sequences. Two algorithms are proposed: Frequency Patterns (FP) and Tree Patterns (TP). De-
spite the fact that the original idea in [54] is intended to be applied to the analysis of sequences of
OS systems calls this concept is a quite feasible to be mapped into PNA context. Thus, in PNAF,
the so-called “Audit sequence” is comprised by a set of elements that are in fact audit trails that
describes attributes of assets over the time. The use of this anomaly-based technique implies the
need of a trainer dataset that is supposed to describe normal behaviour of assets involved on the
network traffic.

3.6.1 Short sequences analysis

As it is presented by Guojun Mao et al. [54], this anomaly detection model is based on the concept
of short sequences. Here, system calls that belong to a system process are transformed into a long
sequence where each element represents a single system call. In order to get short sequences, a
sliding window of size k is used in such a way that subsets of sequences of k elements are retrieved
by shifting the window from the first element to the n-th element of the long sequence. In order to
understand further definitions within PNA context, original definitions from [54] are summarized
below:

Definition 1 (Process trace). Given a process p, a p’s trace t is a sequence of system calls
conducted by p from the beginning to the end of the process, denoted by t =< c1, c2, ..., cL >.

Definition 2 (A short sequence). Given the size of a sliding window K and a process trace t =<
c1, c2, ..., cL >, if L > K, the set of short sequences of t is created through sliding windows, which
means t is transformed into a set of short sequences (sj)L−K−1 where sj =< cj , cj+1, ..., cj+K−1 >
is a short sequence with length K(j = 1, 2, ..., L−K − 1)

Such definitions can be mapped into the PNA context. To this end, audit trails can be used
to describe sequences. Thus within PNA context it is possible to define the following concepts:

Definition 4 (Audit trail) Set of data describing a single asset. This data may refer to different
contexts (e.g. audit trail of web servers used by certain asset over the time)

Passive Network Audit Framework 43

CHAPTER 3. FRAMEWORK SPECIFICATION

Definition 3 (PNA sequence). Given an audit trail s, a s’ trace t is a sequence of Assets
attributes contained within s from the beginning to the end of the audit trail, denoted by t =<
h1, h2, ..., hL >, where L is the number of assets attributes extracted from s.

Definition 4 (PNA short sequence) Given the size of a sliding window K and a PNA trace t =<
h1, h2, ..., hn >, if L > K, the set of short sequences of t is created through sliding windows, which
means t is transformed into a set of short sequences (hj)L−K−1 where sj =< hj , hj+1, ..., hj+K−1 >
is a short sequence with length K(j = 1, 2, ..., L−K − 1).

Figure 3.6a shows an example of the concept using “sc” (system calls) as elements. Figure
3.6b shows a mapping example using Audit Attributes with a window size k=3

Figure 3.6: Short sequence concept and PNA mapping example

The original detection model proposed in [54] defines two algorithms: Frequency Patterns (FP)
and Tree Patterns (TP). These algorithms are based on different detection methods, however both
are intended to detect anomalies by analyzing short sequences. FP is based on a simple and
general frequency analysis, whereas TP is based on the definition of a forest comprised by a set of
trees of depth equals to the size of the window k, containing all the possible short sequences within
the trace t of each process.

Moreover, the whole anomaly detection is based on a trainer-detector model. For both algo-
rithms FP and TP, a base Trainer dataset (which is supposed to be comprised only by normal or
valid sequences) is generated to execute a Detector algorithm that can be used in order to identify
possibles anomalies within unproven short sequences. Furthermore, a threshold value is used to
specify the boundary of normal patterns.

3.6.2 Frequency Pattern

This detection method is based on frequency analysis. Taking into account the Definition 4 of
Frequent System Call presented in [54], the corresponding mapping into PNA context is as follows:

Definition 5 (Frequent asset attribute) Let the number of the audit trails be M, the size of
sliding window K, and the user-specified threshold called minimum support (percentage) be δ. An
asset attribute e is called a frequent asset attribute in the l th position (l = 1, 2, ...,K) related
to the i th audit trail (i = 1, 2, ...,M) if the ratio of the times that e occurs in the l th position
(l = 1, 2, ...,K) related to the i th audit trailm to the number of all short sequences in the i th
audit trail is not less than δ.

44 Passive Network Audit Framework

CHAPTER 3. FRAMEWORK SPECIFICATION

Definition 6 (Frequent pattern) Given a set of short sequences (sij)MXN and the size of sliding
window K, we can get frequent patterns, denoted by (fil)MXN , such that each frequent pattern
fil is the collection of frequent asset attributes in the l th position related to the i th audit trail.

In summary, Frequency analysis need to generate a Trainer dataset by retrieving the Frequent
asset attributes within the threshold and then check the unproven sequence by looking for short
sequences that contain elements that are not present within the Trainer dataset.

3.6.3 Tree Pattern

The second approach, based on the use of Trees of depth K, is proposed as well in [54]. This
scheme describes every single short sequence as a path within the Tree’s structure. In fact, the
whole structure may include a set of Trees or Forest. In addition, a Matching Value (MV) is used
as a threshold, such that positive detection might be triggered taking into account the size of the
sliding window K as well as the MV.

Taking as a basis both Definition 7 (Tree Pattern) as well as Definition 8 (Matching Value)
proposed in [54], the corresponding mapping into PNA context defines the following concepts:

Definition 7 (Audit Tree Pattern). Given a training dataset of short sequences (sij)MXN and
the size of sliding window K, the tree patterns for anomaly detection trained from (sij)MXN ,
denoted as (til)MXV , are a set of trees, each of which til presents the l th tree in a forest related
to audit trail sti. Thus, every path of til from the root to a leaf constitutes a short sequence in
(sij)MXN .

Definition 8 (Matching Value). Given a tree pattern base (til)MXV , and a user-specified match-
ing parameter w(w < 1), for a testing short sequence s =< h1, h2, ..., hK > (where K is the size
of sliding window) related to an audit trail sti , a matching degree needs to be evaluated between
s and (til)V that is the forest related to sti in (til)MXV . The computing formula is as follows:
MV (s, (til)V) = w + w2 + ... + wL, where L is the length of the longest sub-sequence of s that
matches tree patterns (til)V .

There are some considerations to use this approach. On the one hand, with Frequency Pattern
approach, an anomalous sequence should happen several times in order to be identified as fre-
quent pattern and to be marked within the threshold. Therefore, unusual sequences that happen
only once or a few times, might not be detected considering a high threshold, whereas using a
low threshold the number of false positives may increase significantly turning this approach into
unsuitable detection method for PNAF despite the fact that it is a very simple algorithm with
computational efficiency.

On the other hand, Tree Pattern algorithm is a more complex technique which is able to char-
acterize every single sequence within the network traffic. In this case, the amount of times that
anomalous events happen is independent from the detection result. It just analyzes how the se-
quences themselves are defined. Hence, PNAF uses Tree Pattern algorithm and the corresponding
algorithms are presented in Figure 3.7

Given the aforementioned mapping definitions, PNA sequences are defined according to asset
attributes. The initial scope of PNAF includes only definitions showed in Table 3.2, nevertheless
additional attributes may be used to describe different patterns. Thus, In order to create sequences,
different fields are concatenated in such a way that a single sequence is a string of the form asset-
attribute-value that depending on the kind of anomaly is intended to identify, different attributes
are used.

Some modifications to the original algorithm have been performed. First, the original Tree
Pattern algorithm uses ε as additional dynamic user-defined parameter, together with the sliding

Passive Network Audit Framework 45

CHAPTER 3. FRAMEWORK SPECIFICATION

Figure 3.7: Tree pattern trainer and detectors algorithms proposed in [54].

Anomaly to identify Sequence definition
Changes on connection targets Asset-ConectionDestination-Protocol
Changes on software Asset-SoftwareName-SoftwareVersion

Table 3.2: Attributes used to create the sequences

window size K. Since every single sequence is contained on the tree structure, and a single match-
ing evaluation between unproven and trainer dataset is done by the algorithm itself, then depth
(i = 1, 2, ...,K) of a partial short sequence that is contained within the trainer, actually represents
the actual matching degree. For instance, taking the short sequence < a, b, c, d >, if sub-sequence
< a, b, c > is contained on the trainer but the whole < a, b, c, d > is not, then the actual matching
degree is i = 3 so that it matches in the 75% of the elements and therefore the Matching value
[(til)V) = w + w2 + ...+ wL] defined on the Tree pattern algorithm can be calculated with i = 3.
Thus, the actual implementation defines the threshold ε = K.

Furthermore, in order to decrease the false positive rate, the sequences with elements that
are not part of the trainer dataset are discarded in such a way that only sequences comprised
by trained elements are evaluated by the algorithm. In this regard, a support argument to take
untrained elements out of the detection model is due to the fact that anomalies using unknown
attributes can be detected in a simpler ways by using other detection models (e.g. signature based,
whitelisting, etc). Thus, detection is focused on misbehavior related to known attributes. The
actual output of this algorithms is a list of anomalous sequences that afterwards can be correlated
to asset security events.

3.7 Functional model definition

This section describes a summary of the general workflow of PNAF in which different types of
data are processed to produce the final output of the framework (i.e. a report with information of
security events). In fact, the functional model depicted in Figure 3.8 represents an overview of all
workflows (full context) performed within sequence diagrams presented in Section 3.3 (Figures 3.3,
3.4, 3.5). The three main modules DCM, DPM and DVM perform Data collection, data processing
and data visualization processes respectively, and details of information workflow are described in
next subsections.

3.7.1 Data collection

PNAF performs Data collection in two main modes: online (i.e. real-time network traffic) and
offline (i.e network traffic capture). Then, taking Figure 3.8 as reference, when online analysis is

46 Passive Network Audit Framework

CHAPTER 3. FRAMEWORK SPECIFICATION

Figure 3.8: PNAF workflow model

needed, PNAF uses a scheduler that manages the execution of the toolset over the input traffic in
such a way that initial raw dataset (i.e. logs, alerts, payloads) can feed DPM. Otherwise, in offline
mode, a single traffic capture is passed to the toolset to produce the corresponding initial raw
dataset. The toolset is comprised by the selection of technologies (described in Table 3.1) and it is
controlled by a set of parameters (signatures, policies, filters) that define the actual data produced
by every single tool. At this point, the initial raw dataset contains unprocessed information that,
even thought it provides meaningful information by itself (e.g. IDS alerts, list of domains, etc),
from PNA perspective it does not provide a meaningful interpretation yet, since it needs to be
audited (i.e. check compliance, perform data correlation).

3.7.2 Data processing

DPM receives initial raw dataset as input in such a way that pre-processing engines (i.e. Network
Profiling & Enumeration Engine, Intrusion Detection system Engine, Deep Packet Inspection
Engine, Network Flow Analysis Engine) take the corresponding raw logs in order to decode and
parse them to extract the intermediate dataset. This dataset contains meaningful information that
is classified based on Assets point of view, thus, a summary of description of the whole environment

Passive Network Audit Framework 47

CHAPTER 3. FRAMEWORK SPECIFICATION

can be described at this point. In fact, the kind of information that is retrieved is similar that
SIEM would receive as input, nevertheless it is not the same context in terms of classification
and sorting. For instance, unlike SIEM, (where logs are generated by external tools providing all
information of activity such as IDS alerts, Webserver logs, etc.) intermediate dataset is comprised
by two main subsets focused on assets:

1. Summary subset: It contains the summary of every single attribute found by pre-processing
engines. Its purpose is to show the general picture of environment’s attributes.

2. Tracking subset: It contains the set of attributes of every single asset found by pre-processing
engines, hence further tracking investigations (i.e. audits) can be performed in a simple way.

Once intermediate dataset is generated, it is ready for post-processing, hence it is passed to In-
termediate Data Correlation Engine to perform data correlation. In order to do so, the so-called
PNAF audit data structure is used in such a way that attributes of similar data sources can be
described as part of a single Asset. Such data structure is depicted in figure 3.9.

Figure 3.9: PNAF audit data structure used for intermediate data correlation

When data correlation is done, information is sent to Network Security Audit Engine to perform
the core audit process, taking into account the four Audit components (Blacklist, Dictionary, Rules
and Anomaly) described in Sections 3.5 and 3.6. As a result, additional attributes are added to this
data structure such that correlated data is complemented with audit flags that indicate Compliance
findings for every single Asset.

3.7.3 Data Visualization

The final stage of PNAF workflow is the visualization output. Its purpose is to present the findings
of the whole audit process. In order to do so, PNAF audit data structure is used to feed external
visualization tools. The scope of the very first version of the framework includes only a simple
visualization through web interface using standard JSON formats. This is done to facilitate the
integration with tools such as Kibana[23], Splunk[78], etc, as well as other suites focused on
visualization of security events such as the ones included in Davix [64] distribution.

3.8 Remarks

In regards with framework’s features related to the research question, this section summarizes and
present some remarks about the proposed design:

• Streamlined process: The whole process is simplified in general terms. It has a modular
design which performs serialized tasks in order to collect, process and produce information
through a simple workflow. Thus, this suggest the fact that an auditor may be able to
perform security audits over network traffic in a straight forward way.

• Effectiveness: An effective way to perform security audits is implied by the fact that a
selection of specific-purpose tools are intended to be used within the framework. This not
only means that only required specific information is processed, but also that such processes

48 Passive Network Audit Framework

CHAPTER 3. FRAMEWORK SPECIFICATION

are performed by different engines that are specifically designed to execute specific pre-
processing, post-processing, audit and visualization tasks.

• Flexibility : The modular design for the framework provides flexibility to add further capa-
bilities. This can be done either by adding additional modules within the pre-processing
phase, or by improving existing modules by adding additional parsers. The current design
mainly suggest parsers for some application layer protocols (i.e. HTTP and DNS) and spe-
cific information from protocols of lower layers such as Internet Protocol (IP), TCP and User
Datagram Protocol (UDP) for flow analysis. Nevertheless, for instance, if DPI module needs
to extract specific information for a new protocol, then a new parser can be attached, which
can handle datasets that meet specific formats supported by the framework itself (e.g. CSV,
JSON). In fact, it is important to emphasize the fact that additional capabilities depends on
two different aspects: On the one hand, the external tool that is used to retrieve datasets.
On the other hand, the kind of information that need to be parsed.

Thus, the aforementioned features are intended to provide ease for practical implementations.
In order to find whether this can be done in a feasible way, next Chapter will address a practical
implementation which will be analyzed and validated.

Passive Network Audit Framework 49

Chapter 4

Implementation and Validation

4.1 Overview

This Chapter describes the implementation and validation of the proposed framework. In order
to identify the strengths and the weaknesses of the aforementioned framework’s design, a set
of tests were performed in such a way that findings can provide evidence to argue whether the
intended goals are achieved and to what extent. Moreover, findings are intended to provide support
arguments in order to answer the research questions.

4.2 System overview

PNAF implementation has been written in Perl programming language [63] and it has been de-
signed as a functional programming scheme. Moreover, since one of the purposes of the framework
is to provide processing flexibility (through an API), then PNAF modules (Figure 3.8) were im-
plemented as their corresponding Perl modules, which are independent piece of code that can be
correlated and integrated as part of the whole functional model. PNAF has been implemented in
Perl programming language due to the following reasons:

• Easily extensible: Allows to provide reusable, independent and extensible code that can be
used for specific tasks in PNAF.

• Powerful regular expressions engine: Since many parsing processes are involved in PNAF,
Perl provides powerful capabilities to use regular expressions in order to parse and filter
data, taking into account aspects such as performance and flexibility.

• Text manipulation: Since DPI is involved in PNAF, a big amount of text data need to be ma-
nipulated. Thus, flexible integration of libraries part of the public Perl API, Comprehensive
Perl Archive Network (CPAN) [17], can be done to facilitate data extraction tasks.

4.3 Case Study

In order to evaluate the Framework’s implementation, a sase study has been performed. The
running environment includes network traffic samples recorded from a large network environment.
This input dataset contains all activities performed within the network traffic. Thus, it is intended
to achieve PNA goals taking into account how information is retrieved in order to evaluate whether
in a real-world example, PNAF design is indeed suitable to be used as PNA technology. This will
provide support arguments to identify possible weaknesses and strengths that may answer research
questions as well.

Passive Network Audit Framework 51

CHAPTER 4. IMPLEMENTATION AND VALIDATION

4.3.1 Proof of concept setup

The setup for the Case Study is comprised by the following components. Table 4.1 shows both,
physical (server) and logical components (host software) that were used to run the experimental
test. Moreover, Table 4.2 presents the input dataset for the experiment that includes a set of
network traffic samples (capture files) of different sizes. The purpose of having such an input
dataset is to test the behavior, performance and actual output of PNAF, taking into account
criteria such as number of packets, type of traffic, protocols, etc. In fact, this set of input samples
is comprised by a set of chunks of captures extracted from the biggest sample (i.e. Capture
10). Furthermore, Table 4.3 presents the components that define audit baselines used to compare
against audit trails extracted from network traffic (e.g. IDS alerts, Flows, Software, Domains,
URLs, etc.)

Component Type Purpose Characteristics
Server Physical Framework execution Dell Inc. PowerEdge R510: Intel(R)

Xeon(R) CPU E5620 2.40GHz (16
cores), 32Gb RAM.

Operating sys-
tem

Logical Manage and host the whole
running environment

Gentoo Linux x86 64
hardened/linux/amd64/no-multilib

Perl environ-
ment

Logical Provide the programming lan-
guage for practical implemen-
tation

Perl 5, version 12, subversion 4
(v5.12.4)

PNAF Logical Framework implementation PNAF v 0.1.0

Table 4.1: Case Study. Logical and physical infrastructure

Traffic Sample Size (Mb) Millions of pack-
ets

Duration (sec-
onds)

Capture 1 3,303.06 6 1,135.20
Capture 2 6,306.58 12 2,521.89
Capture 3 9,155.64 18 4,506.91
Capture 4 11,665.39 24 8,275.16
Capture 5 14,110.29 30 10,870.14
Capture 6 16,527.02 36 11,227.89
Capture 7 18,919.26 42 14,721.09
Capture 8 21,966.28 48 17,450.08
Capture 9 24,594.71 54 19,684.57
Capture 10 26,988.89 60 24,301.63

Table 4.2: Case Study. Input datasets (sample captures) characteristics

Audit compo-
nent

Description Details

PNAF Dictionary Vulnerability database from National Vulnerabil-
ity Database [60] publised by NIST[59]. It contains
a list of identified vulnerable products and their
corresponding versions, classified by Common Vul-
nerabilities and Exposures (CVE).

CVE entries: 22,121. Vulnerable
products: 9,792. Vulnerable ver-
sions: 81,308

PNAF Blacklist 1
(IP Reputation)

Reputation database [83] of blacklisted IP ad-
dresses, scored according with the type of threat
(category).

Scored blacklisted IP addresses:
928,965. Number of categories: 33

PNAF Blacklist 2
(Domain Reputa-
tion)

Reputation database [83] of blacklisted domains,
scored according with the type of threat (cate-
gory).

Scored blacklisted domains:
14,294. Number of categories: 33

PNAF Rules Rules to define audit policies to check compliance. Number of rules: 10

Table 4.3: Case Study. Audit components

52 Passive Network Audit Framework

CHAPTER 4. IMPLEMENTATION AND VALIDATION

Table 4.4 shows tools distribution and their corresponding versions. In the case of IDS, it
shows the number of rules that were used to detect intrusions alerts as audit trails. It has to be
noted that IDS signatures were taken from Snort VRT[70] and Emerging Threats [82] rulesets.

Tool Version Additional description
argus 3.0.6 none
bro 2.3 none
cxtracker github 52318e60d5 none
httpry github 7dc427196a none
nftracker github c9a920c324 none
p0f 3.06b none
passivedns github fe8f48a3c0 none
prads github 3c751c869e none
snort/OpenAppId 2.9.7.0/2014-05-30.205-0 Number of detectors: 2,196
snort IDS 2.9.6.1 Number of signatures: 21,592
ssldump 0.9b3 none
suricata 2.0.2 Number of signatures: 36,351
tcpdstat github be5bd28da none
tcpflow 1.3/1.4.4 none
tcpxtract 1.0.1 none

Table 4.4: Case Study. Network analysis tools

Finally, Table 4.5 shows how datasets were defined to perform anomaly detection over audit
trails. Around 20% of the total number of audit trails was taken for the Trainer dataset, which is
assumed to contain only normal trails in such a way that, according the simple algorithm presented
in Section 3.6, certain behaviors might be identified. Unproven dataset contains audit trails to
evaluate. For the same dataset, value of K was variable (i.e. k = ε = 3, k = ε = 6 and k = ε = 9)
to check possible differences on the output since bigger k might include longer descriptions paths
(treepatterns) of anomalous events.

Dataset Trainer (audit trails) Unproven (audit trails)
Change on connections targets 200,000 1,047,433
Change on software 2,000 10,394

Table 4.5: Case Study. anomaly detection dataset

4.3.2 Findings

Overview

Table 4.6 describes some details about specific features that were evaluated on the current imple-
mentation.

Feature Observations
Period of analysis PNAF provided flexibility to specify and report a fixed period of time for the

auditing process
Talkers interaction PNAF provided information about the type of interaction (i.e. flow direc-

tion) between talkers within the network. Such an interaction was defined by
classifying assets according with the environment they belong to. This means
that assets are grouped either within Internal or External networks. Thus
possible interactions can be Internal-Internal, Internal-External, External-
Internal and External-External

General Bandwidth
Stats

PNAF provided information about Bandwidth usage, generating accurate
stats due to data correlation and the use of multiple tools (e.g argus, tcpdstat,
capinfos).

Passive Network Audit Framework 53

CHAPTER 4. IMPLEMENTATION AND VALIDATION

Assets distribution -
(Bandwidth)

PNAF provided information about Assets distribution classifying by Band-
width, number of packets, Flow counters, percentage of usage and role identi-
fication. This information is assumed to be accurate due to data correlation
and the use of multiple tools (argus, tcpdstat, capinfos) that output similar
results.

Assets IP sharing be-
haviour

PNAF provided information about assets that were identified to be either a
proxy server or possible NAT gateways with IP sharing. This was detected
by using datasets of tools such as p0f and prads and some suricata rules.
These tools looked for patterns in which, for instance, a certain IP address
had different attributes over the time (e.g. MTU, Window, OS) which meant
that potentially other IP addresses were behind of such IP.

Network Link type dis-
tribution

PNAF provided information about the type of network links based on datasets
generated by different tools (e.g. p0f, prads).

Protocol distribution
(Bandwidth)

PNAF provided accurate information of Protocol distribution classifying by
Bandwidth,number of packets, flows counters and percentage of usage. This
information is assumed to be accurate due to data correlation and the use of
multiple tools datasets (e.g. argus, tcpdstat) with same resulting values.

Data correlation PNAF used data correlation from multiple datasets, which could filter similar
information.

Events classification PNAF took advantages of IDS and DPI engines such as Suricata and Bro.
Thus, event classification was based on the internal classification that these
tools perform and it provided a picture of network activities related to anoma-
lous or malicious patterns (misused-based).

Events tracking PNAF took events datasets generated by IDS and DPI engines to process and
classify event information. This allowed to track events information in depth,
including data of all network layers of TCP/IP model.

DPI over HTTP PNAF DPI engines provided information about application data from HTTP
communications such as URL’s, User Agents, Methods, protocols, status
codes and response phrases.

DPI over TLS PNAF DPI engines provided information about unencrypted application data
from TLS communications such as certificates and fingerprints.

DPI over DNS PNAF DPI engines provide information about application data from DNS
communications such as Domains, TTL, query types, etc. In the case of Do-
mains, PNAF not only presented domains distribution, but also it performed
post-processing tasks in order to use such a dataset for audit purposes (i.e.
Domain reputation auditing with PNAF Dictionary). This information pro-
vided a meaningful context and turned domain information into a more useful
dataset.

Software - Operating
System distribution

Deeper inspection in PNAF due to data correlation

Software - Platform
distribution

PNAF provided a classification of software platforms (e.g. UNIX family,
Windows, Apple, etc.) based on OS distribution. This provided a picture of
environments used within the network.

Software - Services dis-
tribution

PNAF provided information about OS distribution extracted from generated
generated by updated versions of tools (e.g. prads, p0f, suricata, bro) which
used more and improved signatures for OS detection.

Software - Product ver-
sions identification

PNAF presented accurate information on parsing tasks, as well as flexible
data extraction from unknown data formats, due to its tokenization process
(explained in Chapter 3).

Audit - Assets with
vulnerable software

This feature was one of the most useful capabilities of PNAF since it not
only represent one of the core ideas behind auditing and its relationship with
security compliance, but also because it turned manual audit into an auto-
mated process based only on passive analysis. As an actual output, PNAF
produced a list of assets that were identified as vulnerable point within the
network infrastructure since they were using vulnerable versions, based on
the trusted database [60] published by NIST. The scoring process defined by
this database allowed to sort assets according with the risk they represent.

Audit - Assets with
anomalous activity (IP
reputation)

As part of auditing process, PNAF provided a list of assets that were found
targeting IP’s marked with bad reputation based on a trusted database [83].
This identification was also done when the asset themselves were blacklisted.
The scoring allowed to sort the assets based on the risk they represent.

Audit - Assets with
anomalous activity
(Domain reputation)

As part of auditing process, PNAF provided a list of assets that were found
targeting Domains marked with bad reputation based on a trusted database
[83]. The scoring allowed to sort the assets based on the risk they represent.

54 Passive Network Audit Framework

CHAPTER 4. IMPLEMENTATION AND VALIDATION

Audit - Assets with
anomalous activity
(Policies)

PNAF provided information about policy violations based on PNAF rules as
baseline and data correlation dataset as input. Since this feature is intended
to define specific policies for specific environments, then unlike Dictionary
and Blacklist audit engines, this input is not a standard baseline but rather
specific list of policies defining expected behaviors. The actual output showed
list of assets violating any of defined policies.

Audit - Assets with
anomalous activity
(IDS events)

Despite the fact that IDS datasets were used for data correlation (used for
post-processing tasks), IDS events were also presented in a separate classifi-
cation to present the list of assets that triggered security alerts.

Audit - Assets with
anomalous activity
(mining)

PNAF can perform anomaly detection for certain behaviours, however it was
very limited. Audit trails contained on trainer dataset were not enough.
Even though about 20% of the total number of audit trails was considered,
features extraction were not proportional. This means that the actual output
of such algorithm depends not only on the size of its trainer, but also on the
distribution of the number of assets that are actually described on it. Thus,
anomaly detection turned out to be inaccurate unless a better Trainer dataset
is used (i.e. more assets are described as well as more number of audit trails
for every of them).

Table 4.6: Case study. PNAF features evaluation.

Performance

Since the research question involves effectiveness as one of the features of the framework, then
performance needs to be evaluated in order to find whether a practical implementation is feasible
using the proposed design. Thus, different tests were performed using a sample dataset comprised
by ten captures of variable sizes. The reason to use multiple files of different sizes was to try to find
out the behaviour of the Framework, analyzing relatively small and large files. As it was explained
before, the biggest file is actually the original dataset, whereas the other nine (i.e. captures 1 to
9) are aggregated chunks of the biggest one containing the n first millions of packets. Moreover,
for every test there were two different schemes:

1. Parallel execution: PNAF was executed at the same time over every single file, using the
same configuration (described on “Proof of concept setup” section).

2. Single execution: PNAF was executed as a queue of files, thus every single sample capture
was analyzed as a unique task on the system, meaning that no additional tasks were executed
on the server during this execution time. PNAF configuration was the same for all the
captures as well (described on Proof of concept setup section).

Figure 4.1 shows the execution times for every single capture in both schemes Parallel and Sin-
gle execution. It has to be noted that, taking into consideration PNAF functional model (Figure
3.8), full execution includes tasks of DCM (i.e. initial raw dataset from toolset execution), DPM
(i.e. intermediate dataset and post-processing) and DVM (i.e. audit reporting). This test showed
that, when multiple files need to be analyzed, Parallel execution takes more time per single file (in
average a 50% more time). Nevertheless, it finished the processing of all capture files within a time
equivalent to the one of the biggest file (i.e. 60 millions of packets [24Gb of traffic] in around 5.45
hours), whereas single execution took the sum of all sequential executions (i.e. around 18.74 hours).

Moreover, it has to be emphasized the fact that behaviour of execution time was also different
in both schemes. On the one hand, in Parallel execution, time increment was not directly pro-
portional to the size of the file, but it was below a linear behaviour. On the other hand, Single
execution presented a linear trend, slightly below the actual linear reference. These behaviours
are presented in Figure 4.2.

Passive Network Audit Framework 55

CHAPTER 4. IMPLEMENTATION AND VALIDATION

Figure 4.1: Execution times of PNAF. Parallel and Single execution comparison.

Figure 4.2: Execution times behaviour for Single and Parallel full executions.

PNAF performs different kind of tasks that were independent from each other (nevertheless
linked by their input/output datasets according to PNAF functional model). Hence, during the
experiment all specific execution times were recorded in order to find possible issues and to define
criteria for improvements. Figure 4.3 shows a comparison of execution times between Instance-only
and Full execution processing modes. Instance-only processing does not include external toolset
execution times, but it includes only PNAF components execution according PNAF functional
model (Figure 3.8). Thus, it takes into account DCM (i.e scheduler, parameters loading), DPM
(i.e intermediate dataset generation and post-processing) and DVM (i.e. audit reporting) tasks.
This basically measures the processing time when initial dataset is already generated, so it is just
read as intermediate input dataset.

This test showed that execution of a PNAF instance itself is significantly faster. In fact, on
average it took only 29.67% of the whole execution time in single mode, whereas in parallel it took
only 15%. This meant that performance issues were not directly related with actual PNAF tasks
themselves, but with the way how initial datasets (i.e. toolset raw logs) are generated by external
tools. Figure 4.4 shows relative percentage of time from the whole execution that DPM and DVM
take to process all datasets produced by the external toolset (e.g. Snort, Argus, Suricata, Prads,
Bro, etc) and to generate the actual output.

56 Passive Network Audit Framework

CHAPTER 4. IMPLEMENTATION AND VALIDATION

Figure 4.3: Execution times of PNAF. Full and Instance-only execution comparison

Figure 4.4: Percentage of the whole execution time that PNAF tasks take to process data.

Figure 4.5 shows executions times, emphasizing the ones of core auditing processes (post-
processing), in which the actual verification and finding of potential anomalies within the network
are identified. This graph also shows the difference of times when specific PNAF parameters
for the auditing assets are defined (e.g. homenet of assets to audit). This actually found that
PNAF parameters for filtering do not affect significantly the performance, since in general terms,
execution times were just slightly higher.

Figure 4.5: Execution times of DPM tasks

Passive Network Audit Framework 57

CHAPTER 4. IMPLEMENTATION AND VALIDATION

Accuracy

Validation of an audit process implies that not only baselines (e.g. trusted sources such as NVD
[60]) were known to perform a comparison process based on all information gathered from the
raw traffic, but also the fact that previous knowledge about the network was known (e.g. assets
subnets, roles, services, etc). This means that, in order to evaluate whether the actual output
of the framework is indeed accurate, then previous knowledge about the network was taken into
account in order to analyze whether PNAF actual output contained accurate features and issues
according to the baselines that PNAF was set to use and the goals that PNAF was intended to
achieve.

However, it has to be emphasized the fact that, unlike manual auditing processes, in which se-
curity compliance verification can be performed within the full environment to gather real evidence
about security events, PNAF auditing process only gathers relative evidence from its single input
dataset. Hence, there are some assumptions to be considered as part of the validation process:

• All baselines used to perform audit comparisons (i.e. NVD, IP and Domain reputation)
were considered as trusted base. This assumption was supported by the fact that they all
are based on extensive filtering, reputation score and previous knowledge as is explained in
their sources [60], [83].

• All information interpreted by PNAF that describes to assets themselves (and not security
events), represents valid evidence since in PNA context, the single input dataset does not
contain actual logs, but only network activity used to create equivalent logs. This does not
mean validation assumes that actual PNAF output was always accurate, but rather PNAF
datasets were considered untrusted (i.e. potential false positives triggering) when assets
information was identified from data with unknown or non-standard formats (e.g. datasets
different from Common Log Format [RFC 1413] or User Agent format [RFC 2616]). In this
sense, three main classification were defined: (1) Trusted : Data meets standard formats, (2)
Untrusted : completely unstructured formats and (3) Partially trusted : format is partially
standard.

• From the Passive point of view, there is no direct way to perform an actual full validation
of findings of the framework, since it would imply to check every single asset found within
the network. Even for small environments, hundreds of single assets should be verified either
manually or in an automated way, which is also out of the PNA scope since it would involve
active tasks (e.g. interaction with assets, queries, software verification, additional traffic,
etc), as well as time consuming and even unfeasible or inconvenient tasks.

Thus, taking into account the aforementioned assumptions, false positives might be triggered
either during log generation (by external toolset) and the tokenization process (processing un-
known formats). Nevertheless, since the tokenization process involves generation of all possible
combinations of unknown strings (under basic criteria defined on Algorithm 2), then straight for-
ward fixes, based on whitelisting, could be defined to improve the accuracy for this well known
issue. This will be explained in the last Chapter (Further Work). Table shows a general evaluation
of the actual PNAF output, describing the number of trusted, untrusted and false positives con-
text. A summary about these consideration and its relationship with the PNA context in general
will be tackled in the last Chapter as well (Discussion section).

58 Passive Network Audit Framework

CHAPTER 4. IMPLEMENTATION AND VALIDATION

Dataset Total
identified
IDs

Trusted Partially
trusted

Untrusted False
positives
Number

False Positives De-
scription

Software 1062 500 120 442 6 Invalid combination of
product name and ver-
sion that were formed
from data correlation
and tokenizer and that
was marked to be vul-
nerable according to
NVD baseline.

Assets 651 211 384 56 59 Assets linked with
CVEs triggered from
invalid products or
reputation IP that
was retrieved from
correlation stage and
that were marked as
vulnerable according
to the accumulated
total score of their
vulnerable products
and the threshold set
as audit parameter.

Table 4.7: Case Study. Accuracy evaluation

Finally, as it was explained on Table 4.6, anomaly detection presented poor detection results
due to the lack of assets features described within the trainer dataset. In practice, PNAF was
able to identify the same number of anomalies in all cases for k = 3, k = 6, k = 9, however such a
detection was not completely accurate since only 1,694 out of 5,647 assets were partially described
for Connection targets, whereas only 577 out of 2,242 for Software changes. Consideration about
this will be summarized in last Chapter (Discussion Section).

Dataset Assets described on
Trainer

Actual Anomalies
Identified

Threshold

Changes in Software 577 2 3,6,9
Changes in Connection targets 1694 1 3,6,9

Table 4.8: Case Study. Accuracy evaluation

4.4 Discussion

Experiments showed that PNAF was able to analyze data in a passive way with good results,
however different kind of issues and considerations were identified in order to deploy such a PNA
technology. It has to be mentioned that, in fact, some of them are related with PNAF design
itself, whereas others are involved with the practical implementation. In summary, aspects to take
into account are:

1. Reliability : Unlike similar technologies such as SIEM, PNA has no actual information gen-
erated as trusted data sources (i.e. actual raw logs from tools), but rather the fact that they
have to be generated from raw network traffic (e.g. through DPI), means that reliability is
not the same. This actually implies additional tasks and intermediate validation processes
(e.g. tokenization and terms whitelisting) that would allow to produce more reliable data.
Thus, it has to be emphasized that one of the core assumptions of PNA, as actual passive
technology with single input data, is to have reliable data in regards with network profil-
ing and enumeration (that would be used to identify security issues). This data is then

Passive Network Audit Framework 59

CHAPTER 4. IMPLEMENTATION AND VALIDATION

interpreted and validated to some extent using baselines (e.g. standard formats, nature of
signatures, etc).

2. Accuracy : In order to measure the accuracy of a PNA system, different aspects should be
taken into account. False positives can be categorized according the stage they might be
triggered on (i.e. intermediate dataset or post-processing). On the one hand, all initial
security datasets (e.g. IDS alerts, weird patterns, etc) involve certain level of uncertainty
about whether all triggered events indeed belong to anomalous or even malicious activities.
This is due to the fact that PNA depends partially on how external tools are fed with
specific detection parameters (e.g. VRT rules, community rules, unreliable OS identification
signatures, etc), then it represents an additional layer to be validated and controlled to avoid
false positives on intermediate input data. On the other hand, post-processing stage might
trigger false positives due to unreliable initial datasets either from previous false positives
or from Untrusted data that is handled during this post-processing stage (i.e. generating
tokenizer false positives).

3. Performance: Since PNA technology involves different tasks to capture, decode, filter, com-
pare and produce actual security interpretations, then a set of performance issues has to
be tackled to deploy an effective analysis technology (i.e feasible to be used within network
environments regardless their size). First, the actual performance problem is mostly related
with the way how initial datasets are produced (i.e. raw data logs from external toolset).
For instance, with big sample captures, network traffic needs to be read multiple times de-
pending the number of external tools are used within the framework. In addition, reading
may take more or less time depending on the tool.

Moreover, another big problem is the amount of input/output operations performed within
the system (in which hard-disk read/write operations are more expensive than CPU/Mem-
ory transactions). In fact, the reason why during experiments all parallel schemes presented
unstable behaviours in execution times, was due to the fact that expensive read/write op-
erations were performed at the same time, decreasing considerably the efficiency of log
generation. Whereas CPU/Memory task were not affected since the system had multiple
cores (16 single cores) and relatively big amount of RAM (32Gb), so that it was possible
to handle single tasks per core. Nevertheless, even in machines with much less resources,
efficiency would be still better as soon they have multiple cores (the more cores the better).
Thus, in order to solve performance issues, a set of proposal are tackled in next Section
(Further Work).

4. Feasibility : One the one hand, for small environments, capabilities such as the ones proposed
on the current implementation of PNAF are quite useful to deploy a fully automated audit
system. In fact, even taking into account relatively low performance in case of limitations on
processing resources, the information that PNAF would provide represent a useful dataset
about security events within the network environment.
On the other hand, in order to turn the framework to be feasible to use in production
systems with huge amount of traffic, the main problem to solve is the performance issue,
since in general terms, the picture about security auditing is useful even for decision making
processes, however, PNA can be combined with NSM and SIEM systems.

5. Additional features: Experiments found that anomaly detection approaches on PNA depends
on the kind of patterns that are intended to be identified, as well as how meaningful trainer
datasets are defined (regardless their size). In this regard, PNA processes normally are
not intended to use formal trainer datasets unless an additional and independent process is
done. For instance, some security technologies such as IPS, provide optional features such
as learning capability (i.e. process in which traffic is recorded to identify patterns), that is
intended to create profiles and trainer sets to improve the accuracy of the system. In the
same sense, in order to create meaningful and useful trainer datasets from network traffic in

60 Passive Network Audit Framework

CHAPTER 4. IMPLEMENTATION AND VALIDATION

PNA, datasets with normal events and expected behaviours should be created beforehand
based on network traffic but specially handled so that they contain indeed assets descriptions.

6. Validation: This process is in practice very difficult to perform. For instance, in small
environments a testing framework could be done in such a way that vulnerabilities and
other issues reported by PNAF can be checked directly on the assets themselves (checking
whether indeed OS, software, system logs, etc, matches with PNA findings). However, even if
such a test shows that all reported findings are accurate, it might not be the same behaviour
on different testing environments (e.g. large networks in which is not possible to validate
thousands of single machines), since a lot of the information depends on the kind of protocols,
applications, systems, etc. Thus, the best way to perform validations processes is by taking
assumptions and analyze data based on trusted baselines (e.g. trusted sources, standard
formats, very specific proven signatures for enumeration processes, etc).

Passive Network Audit Framework 61

Chapter 5

Final Remarks

5.1 Further Work

Taking into account experiment findings, the following tasks can be done to achieve PNA goals
through an improved framework:

• Performance: Improve DCM in such a way that initial dataset can be retrieved without the
need of multiple reads of raw traffic, as well as improve DPM to avoid read/write operations
as possible. This could be done by turning input data set to be raw traffic replayed through
network interface and gathered directly by external tools. That means tools would actually
listen on the network interface to generate initial dataset at the same time. In addition, as
performance test showed about parallel processing and its better performance for multiple
files, then a complete parallel execution environment (e.g. using threads) can be deployed
in such a way that expensive operations (i.e. hard disk read/write) are avoided as much as
possible (e.g. by using local UNIX sockets or pipes instead or temporal log files). This might
turn parallel execution faster not only as a whole process, but also for single files (which
does not happen in the current implementation).

• Baselines: All criteria to filter, control and evaluate information within the framework
can be improved. For instance, in order to avoid false positives in post-processing phase,
whitelisting of terms retrieved from tokenization can be used to reduce or limit invalid entries.
In addition, only well known and trusted rulesets (e.g. from VRT and Emerging threats)
can be used to control false positives during initial dataset generation. Nevertheless, rule
verification should be implemented as formal task within the framework.

• Anomaly features: Although misused-based is more suitable for auditing purposes, there are
some issues that can be tackled in further implementations. On the one hand, there is a
need of an improvement of the way how trainer dataset is created. It is necessary to use
actual trainer datasets that describe enough information about assets that are being audited.
On the other hand, the algorithm used to detect anomalies can be replaced by supervised
machine learning techniques, however, from the audit point of view trainer dataset is still
the most important key since assets need to be described based on audit trails.

5.2 Conclusions

Taking into consideration existing taxonomies (describing standard features of detection frame-
works), existing frameworks (with related PNA capabilities) and results obtained from experiments
using the proposed framework, then actual findings of this research suggest that in order to extend
in the best way both NSM and SIEM capabilities within a PNA approach, the following aspects
should be consider:

Passive Network Audit Framework 63

CHAPTER 5. FINAL REMARKS

• The use of either NSM, SIEM or PNA technologies depends on the characteristics of the
networks as well as monitoring, detection and identification goals that need to be achieved.
Thus, in order to provide a feasible model based on passive technology, PNA should be
considered taking into account two key factors: the use of single input dataset and its focus
on assets.

• Definition of a descriptive language that covers the type of output data that it is aimed to
be retrieved. For instance, multiple input parameters that control output behaviour (e.g.
policies, dictionaries, blacklists) in such a way that granularity can be as depth as the aimed
results (e.g. define event types, role types, asset attributes). In the case of PNAF proposed
audit language, it has been proven to be useful to describe detection parameters in order to
identify vulnerable assets based on trusted baselines.

• PNA can combine different detection and identification models to create data interpretation
about security events. Nevertheless, the point is not to use as many network analysis tools
as possible, but rather take into consideration the kind of data that can be retrieved from
them to use only either specific tools or specific features of a single tool. In PNA it is better
to have real meaningful data to describe assets, such that data correlation from multiple
datasets can be performed. Thus, after an extensive analysis of multiple technologies, a
specific toolset was defined performing not only capabilities and features comparison, but
also defining the role they may play within PNA environments in order to be categorized
according the type of information of security events aimed to generate. It has to be noted
that even if no data correlation nor audit processes are performed, the proposed toolset is a
quite useful to be used as a reference in PNA environments.

• Despite the fact that usually IDS are deployed for threat identification (through alert trig-
gering), as well as SIEM for data correlation, these technologies by themselves, specially IDS,
are not enough to get awareness of security events within network environments. It has to be
emphasized that IDS provide alerting, but this represents an intermediate stage within the
data correlation process, in which different kind of datasets (e.g. logs, data enumeration) are
correlated to generate contexts of security events. In the case of PNA, contexts are defined
by audit baselines.

• The main gap found between PNA and SIEM that has to be filled, is the capability of PNA
approaches to create reliable datasets. Unlike SIEM systems, which already have reliable
input dataset (i.e. actual raw logs from different tools), PNA need to take assumptions and
perfoms additional validation tasks to produce its actual useful output. In fact, this issue
is also related with other challenges of PNA such as good performance to produce datasets
(through extensive filtering, parsing, comparison, etc.) in order to be feasible technology in
large environments. Thus, if this challenge can be tackled in a better way, PNA can cover
significant advantages over SIEM as process, in which only a single input is needed with no
additional tasks involved, meanwhile the reliability is considerable acceptable.

Thus, this framework proposes a feasible way to take advantage of certain NSM and SIEM
capabilities within PNA context, taking into account the gap between these technologies that is
mostly related with reliability, and in spite of issues it involves, PNAF represent a quite useful
technology for passive security audits.

64 Passive Network Audit Framework

Bibliography

[1] Ajith Abraham, Crina Grosan, and Yuehui Chen. Evolution of intrusion detection systems.
School of Computer Science and Engineering, Chung-Ang University, Korea, pages 2–3, 2005.
16

[2] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition, 2010. 17

[3] N. Amalio and G. Spanoudakis. From monitoring templates to security monitoring and threat
detection. In Emerging Security Information, Systems and Technologies, 2008. SECURWARE
’08. Second International Conference on, pages 185–192, Aug 2008. 24

[4] James P Anderson. Computer security technology planning study. volume 2. Technical report,
DTIC Document, 1972. 1

[5] James P Anderson. Computer security threat monitoring and surveillance. Technical report,
Technical report, James P. Anderson Company, Fort Washington, Pennsylvania, 1980. 1

[6] Arcsight. Arcsight esm. http://www8.hp.com/us/en/software-solutions/arcsight-esm-
enterprise-security-management/index.html. 7

[7] HP ArcSight. Hp arcsight express siem. http://www.ndm.net/siem/arcsight/arcsight-express.
5

[8] Ofir Arkin. Demystifying the myth of passive network discovery and monitoring systems.
2012. 5

[9] Stefan Axelsson. Research in intrusion-detection systems: A survey, 1998. viii, 13

[10] Richard Bejtlich. The Tao of network security monitoring: beyond intrusion detection. Pear-
son Education, 2004. viii, 3

[11] Richard Bejtlich. The Practice of Network Security Monitoring: Understanding Incident
Detection and Response. No Starch Press, 2013. 3

[12] Jason Bittel. Http logging and information retrieval tool. https://github.com/jbittel/httpry.
34

[13] James Cannady. Artificial neural networks for misuse detection. In National Information
Systems Security Conference, pages 443–456, 1998. 16

[14] Carlos A. Catania and Carlos Garca Garino. Automatic network intrusion detection: Current
techniques and open issues. Computers and Electrical Engineering, 38(5):1062 – 1072, 2012.
Special issue on Recent Advances in Security and Privacy in Distributed Communications
and Image processing. x, 12, 14, 16, 19

[15] CIDF. Common intrusion detection framework. http://gost.isi.edu/cidf/. viii, 20, 21, 22, 30

[16] CISL. The intrusion detection message exchange format (idmef) rfc 4765.
http://gost.isi.edu/cidf/drafts/language.txt. 20

Passive Network Audit Framework 65

BIBLIOGRAPHY

[17] CPAN.org. Pcomprehensive perl archive network. http://www.cpan.org. 51

[18] Kyle Creyts. Tcpextract python. extract files from captured tcp sessions. support live streams
and pcap files. https://github.com/faust/tcpextract. 34

[19] Frederic Cuppens, Nora Cuppens-Boulahia, and Thierry Sans. Nomad: A security model
with non atomic actions and deadlines. In Computer Security Foundations, 2005. CSFW-18
2005. 18th IEEE Workshop, pages 186–196. IEEE, 2005. 25

[20] John Curry. Sancp: Security analyst network connection profiler.
http://nsmwiki.org/SANCP. 2

[21] Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of intrusion-detection
systems. Computer and Networks, 31(9):805–822, April 1999. viii, 1, 11, 12

[22] Renaud Deraison, Ron Gula, and Todd Hayton. Passive vulnerability scanning: Introduction
to nevo. Revision, 9:1–13, 2003. 7

[23] Elasticsearch. Kibana. a browser based analytics and search interface for elasticsearch.
http://www.elasticsearch.org/overview/kibana/. 48

[24] Simson L. Garfinkel Elson J. Tcpflow, tcp/ip packet demultiplexer.
https://github.com/simsong/tcpflow. 34

[25] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. The kdd process for ex-
tracting useful knowledge from volumes of data. Commun. ACM, 39(11):27–34, November
1996. 4

[26] Edward Fjellskal. Connection tracker is a passive network connection tracker for profiling,
history, auditing and network discovery. https://github.com/gamelinux/cxtracker. 34

[27] Edward Fjellskal. The network file tracker. https://github.com/gamelinux/nftracker. 34

[28] Edward Fjellskal. Passive real-time asset detection system.
http://gamelinux.github.io/prads/. 34

[29] Fox-IT. Protact passive audit. https://www.fox-it.com/en/products/protact/protact-passive-
audit/. 7

[30] P. Garca-Teodoro, J. Daz-Verdejo, G. Maci-Fernndez, and E. Vzquez. Anomaly-based net-
work intrusion detection: Techniques, systems and challenges. Computers and Security,
28(12):18 – 28, 2009. viii, 14, 16, 17, 18, 19, 21

[31] Jonatan Gómez, Dipankar Dasgupta, Olfa Nasraoui, and Fabio Gonzalez. Complete expres-
sion trees for evolving fuzzy classifier systems with genetic algorithms and application to
network intrusion detection. In Fuzzy Information Processing Society, 2002. Proceedings.
NAFIPS. 2002 Annual Meeting of the North American, pages 469–474. IEEE, 2002. 16

[32] Brendan Gregg. Open source tool to trace tcp/udp/... sessions and fetch application data
from snoop or tcpdump logs. http://www.brendangregg.com/chaosreader.html. 34

[33] Ron Gula. Passive vulnerability detection. Network Security Wizards, 9, 1999. 7

[34] Ron Gula. Correlating ids alerts with vulnerability information, 2002. 7

[35] Nick Harbour. Tcpxtract. tool for extracting files from network traffic based on file signatures.
http://tcpxtract.sourceforge.net/. 34

[36] IDWG. Common intrusion specification language. http://gost.isi.edu/cidf/drafts/language.txt.
21

66 Passive Network Audit Framework

BIBLIOGRAPHY

[37] IDWG. The intrusion detection exchange protocol (idxp) rfc 4767.
http://gost.isi.edu/cidf/drafts/language.txt. 20

[38] IDWG. Intrusion detection working group. http://datatracker.ietf.org/wg/idwg/charter/. 20

[39] Clifford Kahn, Phillip A Porras, Stuart Staniford-Chen, and Brian Tung. A common intrusion
detection framework. In Journal of Computer Security. Citeseer, 1998. 20

[40] Sandeep Kumar and Eugene H Spafford. An application of pattern matching in intrusion
detection. 1994. 16

[41] Anukool Lakhina, Konstantina Papagiannaki, Mark Crovella, Christophe Diot, Eric D. Ko-
laczyk, and Nina Taft. Structural analysis of network traffic flows. SIGMETRICS Perform.
Eval. Rev., 32(1):61–72, June 2004. 19

[42] Wenke Lee, Rahul A. Nimbalkar, Kam K. Yee, Sunil B. Patil, Pragneshkumar H. Desai,
Thuan T. Tran, and Salvatore J. Stolfo. A data mining and cidf based approach for detecting
novel and distributed intrusions. In Herv Debar, Ludovic M, and Shyhtsun Felix Wu, editors,
Recent Advances in Intrusion Detection, volume 1907 of Lecture Notes in Computer Science,
pages 49–65. Springer, 2000. 23

[43] Wenke Lee and Salvatore J. Stolfo. Data mining approaches for intrusion detection. In
Proceedings of the 7th Conference on USENIX Security Symposium - Volume 7, SSYM’98,
pages 6–6, Berkeley, CA, USA, 1998. USENIX Association. 19

[44] Wenke Lee and Salvatore J. Stolfo. A framework for constructing features and models for
intrusion detection systems. ACM Trans. Inf. Syst. Secur., 3(4):227–261, November 2000.
viii, 22, 23, 30

[45] Wenke Lee, Salvatore J. Stolfo, and Kui W. Mok. A data mining framework for building
intrusion detection models. In IEEE Symposium on Security and Privacy, pages 120–132.
IEEE Computer Society, 1999. 22, 30

[46] Wei Li. Using genetic algorithm for network intrusion detection. In In Proceedings of the
United States Department of Energy Cyber Security Group 2004 Training Conference, pages
24–27, 2004. 16

[47] Ulf Lindqvist and Phillip A. Porras. Detecting computer and network misuse through the
production-based expert system toolset (p-best). In IEEE Symposium on Security and Pri-
vacy, pages 146–161. IEEE Computer Society, 1999. 16

[48] Guisong Liu, Zhang Yi, and Shangming Yang. A hierarchical intrusion detection model
based on the {PCA} neural networks. Neurocomputing, 70(79):1561 – 1568, 2007. Advances
in Computational Intelligence and Learning 14th European Symposium on Artificial Neural
Networks 2006 14th European Symposium on Artificial Neural Networks 2006. 16

[49] LogRhythm. Logrhythm siem. http://www.logrhythm.com/siem-2.0/one-integrated-
solution.aspx. 4, 5

[50] Davide Lorenzoli and George Spanoudakis. Detection of security and dependability threats: A
belief based reasoning approach. In Rainer Falk, Wilson Goudalo, Eric Y. Chen, Reijo Savola,
and Manuela Popescu, editors, SECURWARE, pages 312–320. IEEE Computer Society, 2009.
24

[51] Matthew V. Mahoney and Philip K. Chan. Learning rules for anomaly detection of hostile
network traffic. In Proceedings of the Third IEEE International Conference on Data Mining,
ICDM ’03, pages 601–, Washington, DC, USA, 2003. IEEE Computer Society. 19

Passive Network Audit Framework 67

BIBLIOGRAPHY

[52] W. Mallouli, F. Bessayah, A. Cavalli, and A. Benameur. Security rules specification and
analysis based on passive testing. In Global Telecommunications Conference, 2008. IEEE
GLOBECOM 2008. IEEE, pages 1–6, Nov 2008. viii, 25, 26, 30

[53] Tenable Log Management and SIEM. Tenable network security.
http://www.tenable.com/solutions/log-management-siem. 4, 5

[54] Guojun Mao, Jing Zhang, and Xindong Wu. Intrusion detection based on the short sequence
model. In Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on,
pages 1449–1454, 2008. viii, 43, 44, 45, 46

[55] Tom Michael Mitchell. The discipline of machine learning. Carnegie Mellon University, School
of Computer Science, Machine Learning Department, 2006. 17

[56] Annie De Montigny-leboeuf and Frdric Massicotte. Passive network discovery for real time
situation awareness. In In Proceedings of the The RTO Information Systems Technology Panel
(IST) Symposium on Adaptive Defence in Unclassified Networks, pages 288–300, 2004. 7

[57] CERT Network Situational Awareness Team (CERT NetSA). Silk, the system for internet-
level knowledge. https://tools.netsa.cert.org/silk/. 34

[58] Peng Ning, X. Sean Wang, and Sushil Jajodia. A query facility for common intrusion detection
framework. In In Proceedings of the 23rd National Information Systems Security Conference,
pages 317–328, 2000. 21

[59] National Institute of Standards and Technology. Computer security resource center (csrc).
http://csrc.nist.gov/. 52

[60] National Institute of Standards and Technology. National vulnerability database.
http://nvd.nist.gov/download.cfm. 52, 54, 58

[61] Open Information Security Foundation (OISF). Open source ids / ips / nsm engine.
http://suricata-ids.org/. 2, 34

[62] Animesh Patcha and Jung-Min Park. An overview of anomaly detection techniques: Existing
solutions and latest technological trends. Computer Networks, 51(12):3448 – 3470, 2007. viii,
13

[63] Perl.org. Perl programming language. http://www.perl.org. 51

[64] PixCloud. The davix live cd: Security visualization. http://www.secviz.org/node/89. 48

[65] Phillip A Porras and Peter G Neumann. Emerald: Event monitoring enabling response to
anomalous live disturbances. In Proceedings of the 20th national information systems security
conference, pages 353–365, 1997. 15

[66] Phillip A. Porras and Alfonso Valdes. Live traffic analysis of tcp/ip gateways. In NDSS. The
Internet Society, 1998. 19

[67] Leonid Portnoy. Intrusion detection with unlabeled data using clustering. 2000. 19

[68] Delaware corporation QoSient, LLC. Argus. network audit and real time flow monitor tool.
http://qosient.com/argus/. 2, 34

[69] Martin Roesch. Snort - lightweight intrusion detection for networks. In Proceedings of the
13th USENIX Conference on System Administration, LISA ’99, pages 229–238, Berkeley, CA,
USA, 1999. USENIX Association. 16

[70] Martin Roesch and The Snort Team. Snort intrusion detection system. http://snort.org/. 2,
34, 53

68 Passive Network Audit Framework

BIBLIOGRAPHY

[71] Mohsen Rouached and Hassen Sallay. An efficient formal framework for intrusion detection
systems. Procedia CS, 10:968–975, 2012. viii, 24, 25, 30

[72] M.J. Schultz, Ben Wun, and P. Crowley. A passive network appliance for real-time network
monitoring. In Architectures for Networking and Communications Systems (ANCS), 2011
Seventh ACM/IEEE Symposium on, pages 239–249, Oct 2011. 29

[73] Matt Shelton. Passive asset detection system. http://passive.sourceforge.net/. 2

[74] Sourcefire. Rna, real time network awareness by sourcefire.
http://www.sourcefire.com/products/rna.html. 7

[75] George Spanoudakis, Christos Kloukinas, and Kelly Androutsopoulos. Towards security mon-
itoring patterns. In Proceedings of the 2007 ACM Symposium on Applied Computing, SAC
’07, pages 1518–1525, New York, NY, USA, 2007. ACM. 24

[76] Georgios P. Spathoulas and Sokratis K. Katsikas. Enhancing {IDS} performance through
comprehensive alert post-processing. Computers and Security, 37(0):176 – 196, 2013. viii, 27,
28

[77] Paul Spirakis, Sokratis Katsikas, Dimitris Gritzalis, Francois Allegre, John Darzentas, Claude
Gigante, Dimitris Karagiannis, P Kess, Heiki Putkonen, and Thomas Spyrou. Securenet: A
network-oriented intelligent intrusion prevention and detection system. Network Security
Journal, 1(1), 1994. 14

[78] Splunk. Splunk. operationl intelligence platform. http://www.splunk.com/. 48

[79] Stuart Staniford, James A. Hoagland, and Joseph M. McAlerney. Practical automated de-
tection of stealthy portscans. J. Comput. Secur., 10(1-2):105–136, July 2002. 19

[80] Bro Development Team. Bro network security monitor. http://www.bro.org/. 34

[81] Tenable. Tenable passive security scanner. http://www.tenable.com/products/passive-
vulnerability-scanner. 7

[82] Emerging Threats. Etopen ruleset. http://emergingthreats.net/open-source/etopen-ruleset/.
53

[83] Emerging Threats. Iqrisk rep list actionable threat intelligence.
http://emergingthreats.net/products/iqrisk-rep-list/. 52, 54, 58

[84] Alfonso Valdes and Keith Skinner. Probabilistic alert correlation. In Proceedings of the 4th
International Symposium on Recent Advances in Intrusion Detection, RAID 00, pages 54–68,
London, UK, UK, 2001. Springer-Verlag. 28

[85] Alient Vault. Alienvault open threat exchange. http://www.alienvault.com/open-threat-
exchange. 4, 5

[86] Alient Vault. Open source security information management.
http://www.alienvault.com/open-threat-exchange/projects. 4

[87] John Adams. Modified version of Dave Dittrich’s tcpdstat project. Tcpdstat. protocol statis-
tics. https://github.com/netik/tcpdstat. 34

[88] Robert (Bamm) Visscher. Sguil: The analyst console for network security monitoring.
http://bammv.github.io/sguil/index.html. 2

[89] Michal Zalewski. P0f v3. http://lcamtuf.coredump.cx/p0f3/. 34

Passive Network Audit Framework 69

Glossary

Alerts Events triggered by an Intrusion Detection System when specific pattern occurs within
the network traffic..

Anomalous activity Any activity out of the thresholds or specifications of any kind of com-
munication protocol, information exchange or component interaction within the network
platform..

Anomalous component Component related to any anomalous activity..

API Application Programming Interface intended to manipulate and develop additional, specific
or personalized features within the framework..

Assets Any component of the network that has a value either for the organization or the network
platform itself..

Attack Any event that is intended to infringe the security level of the network platform..

Attacker Any person or entity (i.e. internal or external component) which has been identified
as the source of an attack..

Audit policy Process in which a set of policies defined either by the organization or by standard
security baselines, are compared against the behaviour of the network traffic in such a way
it is possible to find possible policy violations..

Data collection Process in which samples datasets are gathered for further analysis..

Data processing Process in which the collected data is parsed, filtered, classified, etc. in order
to create meaningful interpretation taking into account the information security context and
security baselines..

Deep Packet Inspection Network traffic analysis technique in which different network layers
are decoded, analyzed and interpreted in order to characterize the network activities and
extract specific information..

Evidence Any data that can prove or support the interpretation of any event identified and
reported within the framework..

Impact analysis Process in which the impact (i.e. risk x vulnerabilites) is calculated taken into
consideration findings about vulnerability and risk assessment..

Intrusion Detection System System that inspects the network traffic in order to trigger alerts
when a specific pattern is identified..

Malicious activity Any activity out of the scope of the thresholds or specification, with explicitly
identified malicious behaviour within the security context defined either by the organization
or by any general security reference..

Passive Network Audit Framework 71

Glossary

Malicious component Component related to malicious activity..

Malware Any software (i.e. piece of code or binary) that is involved either on attacks or malicious
activity..

Network Flow Analysis Network traffic analysis technique in which only the network flows are
analyzed in order to generate statistics and patterns identification..

Network platform Set of components that comprises the company’s logical environment in
which information exchange, data processing or any communication protocol is performed..

Network Security assessment Process intended to determine the status of the network within
the information security context..

Passive Network Audit Network auditing process performed in such a way that network traffic
is collected without any kind of active interaction with the network components. Thus, no
changes take place over communication environment..

Policy violation Any event out or against the policies defined by the organization or a security
baseline..

Security level Exposure status of the assets within the network platform within the information
security context. It is useful to define the level of compliance of certain policies..

Threat Any event that can cause damage to the network platform. It can be rated as a chance
or probability given certain facts such as vulnerabilities, security level, etc..

Vulnerability Any weakness identified within the network platform focused on the information
security context. Such a weakness might allow any attacker to reduce the network security
level..

72 Passive Network Audit Framework

Appendix A

Appendix

This appendix shows the actual output of DVM, which includes not only post-processed dataset,
but the list of audited assets that were identified with possible anomalous activity or policy
violations based on all baselines.

Figure A.1: PNAF Audit Actual Output (Dashboard).

Passive Network Audit Framework 73

APPENDIX A. APPENDIX

Figure A.2: PNAF Audit Data structure visualization.

74 Passive Network Audit Framework

APPENDIX A. APPENDIX

Figure A.3: PNAF Audit Vulnerability Assessment.

Figure A.4: PNAF Audit Data. Blacklist results. (IP reputation).

Passive Network Audit Framework 75

APPENDIX A. APPENDIX

Figure A.5: PNAF Audit Data. Blacklist results. (Domain reputation).

Figure A.6: PNAF Audit Data. IDS Events Dataset.

76 Passive Network Audit Framework

APPENDIX A. APPENDIX

Figure A.7: PNAF Tool dataset (group 1).

Figure A.8: PNAF Tool dataset (group 2).

Passive Network Audit Framework 77

APPENDIX A. APPENDIX

Figure A.9: IDS Performance comparison

Figure A.10: Hard disk read/write transactions, and CPU core usage during reading phase

78 Passive Network Audit Framework

APPENDIX A. APPENDIX

Figure A.11: Hard disk read/write transactions, and CPU core usage during processing phase

Passive Network Audit Framework 79

